Don't know where to start with this one

  • Thread starter Thread starter Caldus
  • Start date Start date
AI Thread Summary
To prove the equation A \ (B union C) = (A \ B) union (A \ C), starting with a Venn diagram is recommended to visualize the sets. By shading the regions for both sides of the equation, one can determine if they are identical, which would support the proof. If the shaded areas are not the same, it could lead to finding a counterexample. The discussion also clarifies that 'union' does not function as a traditional addition operator, and the complement operator is denoted by \, not division. Understanding these concepts is crucial for correctly approaching the problem.
Caldus
Messages
106
Reaction score
0
How do I start a problem like this? I need to prove it's true or provide a counterexample if it is false.

A \ (B union C) = (A \ B) union (A \ C)

If someone could point me in the right direction, then I would appreciate it.
 
Mathematics news on Phys.org
i would start with a venn diagram. three circles: one for A, one for B, and one for C. then shade in A \ (B union C) and draw a separate diagram and shade in (A \ B) union (A \ C). if the two shaded regions are identical, then try to prove it's true. if they're not identical, that will narrow your search for a counterexample.
 
you could just prove it:

x in A\(BuC) iff (x in A) and (x not in (BuC) iff etc...

Of course we could pass to a universe, X\Y = X intersect Y^c, and the question just needs you to know about interesections.
 
I'm not too familiar with this, but if we take a numeric example, then does 'union' act as the addition operator? Can we perform arithmetic operations on sets?

For example, take A={3}, B={2}, C={5}

Then would

A /(B u C) = 3 / (2+5) = 3/7

whereas

(A/B) u (A/C) = (3/2) + (3/5) = 21/10

thus providing a counterexample?

Please correct me if I'm wrong.
 
Last edited:
does 'union' act as the addition operator?

Yes, in some sense, but it's hardly defined exactly like the "normal" addition operator... See Wikipedia, set theory for more info.

In your example, B union C = {2, 5}, not 7!

Also, \ stands for complement, not division.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top