E92M3
- 64
- 0
You can know the temperature of a star by fitting a black body spectrum. BUt what if the star is moving with some radial velocity v? I worked out that:
I(\lambda_0,T)=\frac{8\pi h c}{\lambda_0^5}\frac{1}{e^{\frac{hc}{\lambda_0kT}}-1}
\lambda=\lambda_0\sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}
I(\lambda,T)=I(\lambda_0,T)\frac{d\lambda_0}{d\lambda}
I(\lambda,T)=\frac{8\pi h c}{\lambda^5}\frac{1}{e^{\frac{hc}{\lambda kT} \sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}}-1}
=I(\lambda,T')
where T'=T\sqrt{\frac{1-\frac{v}{c}}{1+\frac{v}{c}}}}
Am I correct here? If so, how can we actually tell the temperature of stars?
I(\lambda_0,T)=\frac{8\pi h c}{\lambda_0^5}\frac{1}{e^{\frac{hc}{\lambda_0kT}}-1}
\lambda=\lambda_0\sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}
I(\lambda,T)=I(\lambda_0,T)\frac{d\lambda_0}{d\lambda}
I(\lambda,T)=\frac{8\pi h c}{\lambda^5}\frac{1}{e^{\frac{hc}{\lambda kT} \sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}}-1}
=I(\lambda,T')
where T'=T\sqrt{\frac{1-\frac{v}{c}}{1+\frac{v}{c}}}}
Am I correct here? If so, how can we actually tell the temperature of stars?