Hetware
- 125
- 1
I'm just learning this Latex(sic) formatting, so it's not ideal.
I was trying to explore the geometrical significance of the cross product when I happened upon an interesting observation. I've seen things like this before, but never had time to really examine them.
I define two vectors:
\pmb{A}=A^x\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+A^y\overset{\pmb{{}^{\wedge}}}{\pmb{j}}=A\left(\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}\right)
\pmb{B}=B^x\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+B^y\overset{\pmb{{}^{\wedge}}}{\pmb{j}}=B\left(\cos (\beta )\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+\sin (\beta )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}\right)
Express a new basis with the x-axis aligned with the first vector:
\pmb{\hat{i}}=\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
\pmb{\hat{j}}=\sin (\alpha )\pmb{\hat{i}'}+\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
Write the second vector in terms of the new basis and fiddle with it some:
\pmb{B}=B^x\left(\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right)
+B^y\left(\sin (\alpha )\pmb{\hat{i}'}+\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right)
=B(\cos (\beta )(\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}')+\sin (\beta )(\sin (\alpha )\pmb{\hat{i}'}+\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'))
=B\left(\cos (\beta )\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\cos (\beta )\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'+\sin (\beta )\sin (\alpha )\pmb{\hat{i}'}+\sin (\beta )\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right)
=B\left[(\cos (\beta )\cos (\alpha )+\sin (\beta )\sin (\alpha ))\pmb{\hat{i}}'+(\pmb{-}\cos (\beta )\sin (\alpha )+\sin (\beta )\cos (\alpha ))\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right]
=B\left[\cos (\beta -\alpha )\pmb{\hat{i}}'+\sin (\beta -\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right]
=B^{x'}\overset{\pmb{{}^{\wedge}}}{\pmb{i}}'+B^{y'}\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
Notice that the B^{x'} component is just the magnitude of the cross product divided by the magnitude of \pmb{A}.
Use my own definition of a "complete product" and see that the first term is the dot product, and the second term is the cross product:
\pmb{AB}=AB\left[(\cos (\beta )\cos (\alpha )+\sin (\beta )\sin (\alpha ))\pmb{\hat{i}}'+(\pmb{-}\cos (\beta )\sin (\alpha )+\sin (\beta )\cos (\alpha ))\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right]
\pmb{AB}=\left.(A^xB^x+A^yB^y\right)\overset{\pmb{{}^{\wedge}}}{\pmb{i}}'+\left.(A^xB^y-A^yB^x\right)\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
I believe this works in 3 dimensions. Has anybody seen a development of this line of reasoning regarding vector products?
I was trying to explore the geometrical significance of the cross product when I happened upon an interesting observation. I've seen things like this before, but never had time to really examine them.
I define two vectors:
\pmb{A}=A^x\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+A^y\overset{\pmb{{}^{\wedge}}}{\pmb{j}}=A\left(\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}\right)
\pmb{B}=B^x\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+B^y\overset{\pmb{{}^{\wedge}}}{\pmb{j}}=B\left(\cos (\beta )\overset{\pmb{{}^{\wedge}}}{\pmb{i}}+\sin (\beta )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}\right)
Express a new basis with the x-axis aligned with the first vector:
\pmb{\hat{i}}=\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
\pmb{\hat{j}}=\sin (\alpha )\pmb{\hat{i}'}+\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
Write the second vector in terms of the new basis and fiddle with it some:
\pmb{B}=B^x\left(\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right)
+B^y\left(\sin (\alpha )\pmb{\hat{i}'}+\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right)
=B(\cos (\beta )(\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}')+\sin (\beta )(\sin (\alpha )\pmb{\hat{i}'}+\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'))
=B\left(\cos (\beta )\cos (\alpha )\pmb{\hat{i}'}\pmb{-}\cos (\beta )\sin (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'+\sin (\beta )\sin (\alpha )\pmb{\hat{i}'}+\sin (\beta )\cos (\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right)
=B\left[(\cos (\beta )\cos (\alpha )+\sin (\beta )\sin (\alpha ))\pmb{\hat{i}}'+(\pmb{-}\cos (\beta )\sin (\alpha )+\sin (\beta )\cos (\alpha ))\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right]
=B\left[\cos (\beta -\alpha )\pmb{\hat{i}}'+\sin (\beta -\alpha )\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right]
=B^{x'}\overset{\pmb{{}^{\wedge}}}{\pmb{i}}'+B^{y'}\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
Notice that the B^{x'} component is just the magnitude of the cross product divided by the magnitude of \pmb{A}.
Use my own definition of a "complete product" and see that the first term is the dot product, and the second term is the cross product:
\pmb{AB}=AB\left[(\cos (\beta )\cos (\alpha )+\sin (\beta )\sin (\alpha ))\pmb{\hat{i}}'+(\pmb{-}\cos (\beta )\sin (\alpha )+\sin (\beta )\cos (\alpha ))\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'\right]
\pmb{AB}=\left.(A^xB^x+A^yB^y\right)\overset{\pmb{{}^{\wedge}}}{\pmb{i}}'+\left.(A^xB^y-A^yB^x\right)\overset{\pmb{{}^{\wedge}}}{\pmb{j}}'
I believe this works in 3 dimensions. Has anybody seen a development of this line of reasoning regarding vector products?