Double Delta-Function Potential in Quantum Mechanics?

  • Thread starter Thread starter mattmatt321
  • Start date Start date
  • Tags Tags
    Potential
mattmatt321
Messages
7
Reaction score
0
Hello, recently I had a problem in QM involving a double delta-function potential. A bunch of qualitative questions were asked, some of which were obvious to me immediately, some of which I made an educated guess on, and others I totally guessed. I'm following Griffiths' textbook in studying QM, and luckily I found another problem analogous to the one I had before. Any guidance/explanation would be appreciated.

Homework Statement



The potential is V(x) = -α[\delta(x + a) + \delta(x - a)].

The problem specifies that we are only conserved about bound states, E < 0.

Homework Equations



In the end, the even wave function solution yields (ħk/mα) = e-2ka + 1, and the odd wave function solution yields (ħk/mα) = 1 - e-2ka.

The Attempt at a Solution



Based on these solutions, I'm asked a few questions:

1) What is the approximate energies of both the even and odd bound states in the limit 2maα/ħ2 >> 1?
2) Show that as 2maα/ħ2 --> \infty, both energies converge to the energy of the bound state of the single delta-function potential.
3) Show that there is only one bound state in the limit 2maα/ħ2 << 1.
4) Show that the wave function behaves like the bound-state wave function of a single delta-function potential for |x| >> a.

Any guidance regarding these questions is appreciated. I might be able to provide more information if anything is unclear.
 
Physics news on Phys.org
mattmatt321 said:
In the end, the even wave function solution yields (ħk/mα) = e-2ka + 1, and the odd wave function solution yields (ħk/mα) = 1 - e-2ka.
\hbar should be squared in both equations.

The Attempt at a Solution



Based on these solutions, I'm asked a few questions:

1) What is the approximate energies of both the even and odd bound states in the limit 2maα/ħ2 >> 1?
2) Show that as 2maα/ħ2 --> \infty, both energies converge to the energy of the bound state of the single delta-function potential.
3) Show that there is only one bound state in the limit 2maα/ħ2 << 1.
4) Show that the wave function behaves like the bound-state wave function of a single delta-function potential for |x| >> a.

Any guidance regarding these questions is appreciated. I might be able to provide more information if anything is unclear.

You can write the relations above as

\frac{2ka}{2ma\alpha/\hbar^2} = 1\pm e^{-2ka}

Let c=2ma\alpha/\hbar^2 and x=2ka. Then you get

\frac{x}{c} = 1 \pm e^{-x}

You might find it illuminating to plot both sides of the equation to see where the solutions are and what the effect of varying the parameter c is.
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top