Double Derivative of f(x) = (-5x^2+3x)/(2x^2-5)

  • Thread starter Thread starter f22archrer
  • Start date Start date
f22archrer
Messages
14
Reaction score
0

Homework Statement



f(x) = (-5x^2+3x) / (2x^2-5)

Homework Equations



f 'x)=
(-6x^2+50x-15) / ( 2x^2-5)^2


The Attempt at a Solution


f ''x= ?
 
Physics news on Phys.org
f22archrer said:

Homework Statement



f(x) = (-5x^2+3x) / (2x^2-5)

Homework Equations



f 'x)=
(-6x^2+50x-15) / ( 2x^2-5)^2


The Attempt at a Solution


f ''x= ?

Can you please show all the steps you used to take the first derivative?
 
f'(x) = (2x^2 -5)((-10x+3) -(-5x^2+3x)4x) / 2x^2-5
= -20x^3 +6x^2+50x-15+20x^3-12x^2 / (2x^ - 5)^2
= -6x^2 +50x-15 / (2x^2 - 5)^2
 
f22archrer said:
f'(x) = (2x^2 -5)((-10x+3) -(-5x^2+3x)4x) / 2x^2-5
= -20x^3 +6x^2+50x-15+20x^3-12x^2 / (2x^ - 5)^2
= -6x^2 +50x-15 / (2x^2 - 5)^2

Thanks, that makes it much easier to check. I think it's correct so far, now just apply the quotient rule one more time to get the second derivative...
 
Either use the quotient rule on your first derivative (which is right), or use the second derivative quotient rule, or use the product rule.

\left( \dfrac{u}{v} \right) ^{\prime \prime}=\dfrac{u^{\prime \prime} v^2-2u^\prime v v^\prime+2u (v^\prime)^2-u v^{\prime \prime}}{v^3}
 
f22archrer said:
f'(x) = ((2x^2 -5)( -10x+3) -(-5x^2+3x)4x) / (2x^2-5) 2

= (-20x^3 +6x^2+50x-15+20x^3-12x^2 ) / (2x^ - 5)^2

= ( -6x^2 +50x-15 ) / (2x^2 - 5)^2
It helps to use sufficient number of parentheses. A little spacing can also help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top