(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let D be the region given as the set of (x,y) where 1 <! x^2+y^2 <! 2 and y !<0. Is D an elementary region? Evaluate [tex]\int\int_{D} f(x,y) dA[/tex] where f(x,y) = 1+xy.

2. Relevant equations

3. The attempt at a solution

So I understand that this is two concentric circles(an elementary region) which I can break down into two halves. So what I attempted was to break it into two times the first integral

of x from 2^(1/2) to 0 and the y from (1-x^2)^(1/2) to (2-x^2)^(1/2) so for my final solution I got (pi + 2)/4 the correct solution was pi/2 so I looked up the solution and they used the limit of x from 1 to 2^(1/2). That didn't make a whole lot of sense to me because x actually goes from 0 to 2^(1/2) doesn't it? Can someone attempt to explain why they chose their limits of integration the way they did? Is my method correct and maybe I just screwed up during the stupid Trig. Substitutions which is also very likely. Thanks~

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Double Integral of two concentric circles

**Physics Forums | Science Articles, Homework Help, Discussion**