Doubt about two limits (short)

Felafel
Messages
170
Reaction score
0

Homework Statement


Find the limit of
##1): \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
I am not quite sure if i can solve it the way I did, it has been to easy so there's a trick, I'm afraid

The Attempt at a Solution


##1) \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
=##\displaystyle \lim_{n \to +\infty} e^{\frac{1}{n} (log(f(a+\frac{1}{n})-log(f(a)))}##=
=##e^0=1##

##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
##\displaystyle \lim_{x \to a} e^{ln(\frac{f(x)}{f(a)}) \frac{1}{ln(x)- ln(a)}}##
##\displaystyle \lim_{x \to a} \frac{ln(f(x))-ln(f(a))}{ln(x)- ln(a)}(=\frac{0}{0})## with de l'Hopital
##\displaystyle \lim_{x \to a} \frac{f'(x)}{xf(x)}=\frac{f'(a)}{af(a)}##
 
Physics news on Phys.org
Felafel said:

Homework Statement


Find the limit of
##1): \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
I am not quite sure if i can solve it the way I did, it has been too easy so there's a trick, I'm afraid

The Attempt at a Solution


##1) \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
=##\displaystyle \lim_{n \to +\infty} e^{\frac{1}{n} (log(f(a+\frac{1}{n})-log(f(a)))}##=
=##e^0=1##

##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
##\displaystyle \lim_{x \to a} e^{ln(\frac{f(x)}{f(a)}) \frac{1}{ln(x)- ln(a)}}##
##\displaystyle \lim_{x \to a} \frac{ln(f(x))-ln(f(a))}{ln(x)- ln(a)}(=\frac{0}{0})## with de l'Hopital
##\displaystyle \lim_{x \to a} \frac{f'(x)}{xf(x)}=\frac{f'(a)}{af(a)}##

The derivative of ln(x) is 1/x.

You have 1/x in the denominator. That becomes x in the numerator. (You could have checked your result with an appropriate example.)
 
Felafel said:

Homework Statement


Find the limit of
##1): \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
I am not quite sure if i can solve it the way I did, it has been to easy so there's a trick, I'm afraid

The Attempt at a Solution


##1) \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
=##\displaystyle \lim_{n \to +\infty} e^{\frac{1}{n} (log(f(a+\frac{1}{n})-log(f(a)))}##=
=##e^0=1##

##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
##\displaystyle \lim_{x \to a} e^{ln(\frac{f(x)}{f(a)}) \frac{1}{ln(x)- ln(a)}}##
##\displaystyle \lim_{x \to a} \frac{ln(f(x))-ln(f(a))}{ln(x)- ln(a)}(=\frac{0}{0})## with de l'Hopital
##\displaystyle \lim_{x \to a} \frac{f'(x)}{xf(x)}=\frac{f'(a)}{af(a)}##

Note: that should be l'Hospital"---like the place with the emergency ward---not "l'Hopital" (although it is pronounced as "lo-pee-tal", with a silent 's').
 
Ray Vickson said:
Note: that should be l'Hospital"---like the place with the emergency ward---not "l'Hopital" (although it is pronounced as "lo-pee-tal", with a silent 's').

I tend to see it as l'Hôpital, so maybe they read l'Hôpital and didn't know how to type an ô?
 
thanks everyone!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top