Dual spaces-Existence of linear functional

neomasterc
Messages
5
Reaction score
0

Homework Statement


Let V be a finite dimensional vector field over F. Let T:V→V
Let c be a scalar and suppose there is v in V such that T(v)=cv, then show there exists a non-zero linear functional f on V such that Tt(f)=cf.
Tt denotes T transpose.

Homework Equations


Tt(f)=f°T. Ev(f)=f(v).
Let V*=HomF(V,F)
V*=(V*)*
E:V→V** i.e. E(v)=Ev
Theorem: E is an isomorphism iff V is finite dimensional


The Attempt at a Solution


Ev(Tt(f))=f°T(v)=cf(v).
But now I need to show there is f such that Tt(f)=cf, not just for specific v that satisfies T(v)=cv.
 
Physics news on Phys.org
How would you define f?? Obviously you will want to have f(v)=v. How would you define it for other vectors?? Maybe set f(w)=0 for some other vectors??
 
f is just a linear transformation in V*=HomF(V,F), so you cannot have f(v)=v, f:V→F.
 
f(v)=1 I meant.
 
We cannot define f(kv)=1 and f(w)=0 for w≠v, since if a is a multiple of v and b is a multiple of v, a+b is a multiple of v, so 1=f(a+b)≠f(a)+f(b)=2. So f won't be a linear transformation.
 
neomasterc said:
We cannot define f(kv)=1 and f(w)=0 for w≠v, since if a is a multiple of v and b is a multiple of v, a+b is a multiple of v, so 1=f(a+b)≠f(a)+f(b)=2. So f won't be a linear transformation.

Indeed we can't. Can you solve that?? Don't put ALL the vectors equal to 0, but only some. Do you see it??
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top