MHB Dual Spaces .... Friedberg et al, Example 4, Section 2.6

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book: "Linear Algebra" by Stephen Friedberg, Arnold Insel, and Lawrence Spence ... and am currently focused on Section 2.6: Dual Spaces ... ...

I need help with an aspect of Example 4, Section 2.6 ...

Example 4, Section 2.6 reads as follows: (see below for details of Section 2.6 ...)View attachment 8743Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?

Help will be appreciated ...

Peter
========================================================================================
To understand the context and notation of the above example it may help MHB readers to have access to the text of Section 2.6 ... so I am providing the same ... as follows ...
View attachment 8744
View attachment 8745
Hope that helps ...

Peter
 

Attachments

  • FIS - Example 4, Section 2.6 ... .png
    FIS - Example 4, Section 2.6 ... .png
    10 KB · Views: 123
  • FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    42.8 KB · Views: 107
  • FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    37.7 KB · Views: 120
Physics news on Phys.org
Peter said:
Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
 
Opalg said:
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
Thanks Opalg ...

Appreciate your help...

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top