MHB Dual Spaces .... Friedberg et al, Example 4, Section 2.6

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book: "Linear Algebra" by Stephen Friedberg, Arnold Insel, and Lawrence Spence ... and am currently focused on Section 2.6: Dual Spaces ... ...

I need help with an aspect of Example 4, Section 2.6 ...

Example 4, Section 2.6 reads as follows: (see below for details of Section 2.6 ...)View attachment 8743Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?

Help will be appreciated ...

Peter
========================================================================================
To understand the context and notation of the above example it may help MHB readers to have access to the text of Section 2.6 ... so I am providing the same ... as follows ...
View attachment 8744
View attachment 8745
Hope that helps ...

Peter
 

Attachments

  • FIS - Example 4, Section 2.6 ... .png
    FIS - Example 4, Section 2.6 ... .png
    10 KB · Views: 133
  • FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    42.8 KB · Views: 112
  • FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    37.7 KB · Views: 122
Physics news on Phys.org
Peter said:
Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
 
Opalg said:
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
Thanks Opalg ...

Appreciate your help...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K