MHB Dual Spaces .... Friedberg et al, Example 4, Section 2.6

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book: "Linear Algebra" by Stephen Friedberg, Arnold Insel, and Lawrence Spence ... and am currently focused on Section 2.6: Dual Spaces ... ...

I need help with an aspect of Example 4, Section 2.6 ...

Example 4, Section 2.6 reads as follows: (see below for details of Section 2.6 ...)View attachment 8743Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?

Help will be appreciated ...

Peter
========================================================================================
To understand the context and notation of the above example it may help MHB readers to have access to the text of Section 2.6 ... so I am providing the same ... as follows ...
View attachment 8744
View attachment 8745
Hope that helps ...

Peter
 

Attachments

  • FIS - Example 4, Section 2.6 ... .png
    FIS - Example 4, Section 2.6 ... .png
    10 KB · Views: 122
  • FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    42.8 KB · Views: 105
  • FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    37.7 KB · Views: 119
Physics news on Phys.org
Peter said:
Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
 
Opalg said:
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
Thanks Opalg ...

Appreciate your help...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top