Dual Spaces .... Friedberg et al, Example 4, Section 2.6

Click For Summary
SUMMARY

The discussion centers on Example 4 in Section 2.6 of "Linear Algebra" by Stephen Friedberg, Arnold Insel, and Lawrence Spence, specifically regarding the evaluation of the dual basis function $$f_1(2,1)$$. The conclusion drawn is that $$f_1(2,1) = 1$$ is derived from the definition of the dual basis, where $$f_i(x_j) = \delta_{ij}$$, with $$\delta_{ij}$$ representing the Kronecker delta. In this case, since the first element of the basis is $$x_1 = (2,1)$$, it follows that $$f_1(x_1) = \delta_{11} = 1$$.

PREREQUISITES
  • Understanding of dual spaces in linear algebra
  • Familiarity with the Kronecker delta function
  • Knowledge of basis vectors and their properties
  • Experience with evaluating linear functionals
NEXT STEPS
  • Study the definition and properties of dual spaces in linear algebra
  • Learn about the Kronecker delta and its applications in linear algebra
  • Explore examples of dual bases in Friedberg, Insel, and Spence's "Linear Algebra"
  • Practice evaluating linear functionals on various basis vectors
USEFUL FOR

Students of linear algebra, educators teaching dual spaces, and anyone seeking to deepen their understanding of the dual basis and its applications in mathematical contexts.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book: "Linear Algebra" by Stephen Friedberg, Arnold Insel, and Lawrence Spence ... and am currently focused on Section 2.6: Dual Spaces ... ...

I need help with an aspect of Example 4, Section 2.6 ...

Example 4, Section 2.6 reads as follows: (see below for details of Section 2.6 ...)View attachment 8743Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?

Help will be appreciated ...

Peter
========================================================================================
To understand the context and notation of the above example it may help MHB readers to have access to the text of Section 2.6 ... so I am providing the same ... as follows ...
View attachment 8744
View attachment 8745
Hope that helps ...

Peter
 

Attachments

  • FIS - Example 4, Section 2.6 ... .png
    FIS - Example 4, Section 2.6 ... .png
    10 KB · Views: 144
  • FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    FIS - 1 - Section 2.6 Dual Spaces ... PART 1 ... .png
    42.8 KB · Views: 123
  • FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    FIS - 2 - Section 2.6 Dual Spaces ... PART 2 ... .png
    37.7 KB · Views: 136
Physics news on Phys.org
Peter said:
Can someone please explain (in detail) how/why $$f_1(2,1) = 1$$ ... ?
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
 
Opalg said:
This comes directly from the definition of the dual basis. In Example 3 of Section 2.6, Friedberg, Insel and Spence say "Note that $\textsf{f}_i(x_j) = \delta_{ij}$, where $\delta_{ij}$ is the Kronecker delta." In this example, the first element of the given basis is $x_1 = (2,1)$. So $\textsf{f}_1(2,1) = \textsf{f}_1(x_1) = \delta_{11} = 1.$
Thanks Opalg ...

Appreciate your help...

Peter
 

Similar threads

Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K