Eus
- 93
- 0
Hi Ho!
If y=\sin x, \frac{dy}{dx}=\frac{d(\sin x)}{dx}=\cos x.
If x=\sin y, y=\arcsin x, and therefore \frac{dy}{dx}=\frac{d(\arcsin x)}{dx}=\frac{1}{\sqrt{1-x^2}}.
But, if x=\sin y, can \frac{dy}{dx} be done as \frac{dy}{dx}=\frac{dy}{d(\sin y)}=\frac{1}{\frac{d(\sin y)}{dy}}}=\frac{1}{\cos y}=\sec y?
If it cannot, is it because the definition of \frac{dy}{dx} that says that \frac{dy}{dx}=\lim_{\Delta x\rightarrow 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}} requires that dx must be the independent variable and dy must be the dependent variable? Or, is there any other reason?
Thank you very much.
Eus
If y=\sin x, \frac{dy}{dx}=\frac{d(\sin x)}{dx}=\cos x.
If x=\sin y, y=\arcsin x, and therefore \frac{dy}{dx}=\frac{d(\arcsin x)}{dx}=\frac{1}{\sqrt{1-x^2}}.
But, if x=\sin y, can \frac{dy}{dx} be done as \frac{dy}{dx}=\frac{dy}{d(\sin y)}=\frac{1}{\frac{d(\sin y)}{dy}}}=\frac{1}{\cos y}=\sec y?
If it cannot, is it because the definition of \frac{dy}{dx} that says that \frac{dy}{dx}=\lim_{\Delta x\rightarrow 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}} requires that dx must be the independent variable and dy must be the dependent variable? Or, is there any other reason?
Thank you very much.
Eus