E-Field in Hollow Polarized Dielectric

snugwug
Messages
3
Reaction score
0

Homework Statement


Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization P exists.

The Attempt at a Solution


charge densitysurface = P(dot)n --> charge densitysurface = P(dot)r

This is about as far as I've gotten... My problem is I've never dealt with a non-uniform charge distribution before. My first goal was to find the surface charge around the sphere, but the polarization makes it such that it's non-uniform. I've assumed that the dielectric is polarized in the positive-z direction, which puts a concentration of negative charges at the top of the sphere and a concentration of positive charges at the bottom. My professor recommended using a sin() function to integrate over the sphere (positive->neutral->negative->neutral->repeat), but I don't really know how to fit this into a surface integral. Any thoughts?

Thanks,
Spencer
 
Last edited:
Physics news on Phys.org
The material is a dialectric. I don't think it's to be supposed that there is surface charge.
 
There actually i s surface charge - picture a surface of thin dielectric in the xy-plane. If you polarize the whole thing with an e-field in the z-direction, the dipoles at the top of the plane will have their positive charges pointing up (giving a positive surface charge). Likewise, the bottom will have a negative surface charge. This case is tricky, because it's a sphere, so there's a smooth transition around the surface that goes sinusoidally. The professor has actually solved the problem since I first posted the problem, so I'll post a solution later for anybody who's interested.
 
I'd love to see that solution.
 
Haha - so, I've graduated since I originally posted this problem a couple years ago, but I actually just pulled out a box of old schoolwork to sort through. If I can find the solution, I'll post it.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top