Effect of Hall effect on resistance

AI Thread Summary
The Hall effect causes charge carriers in a current-carrying wire to deflect to one side when subjected to a magnetic field, potentially reducing the effective cross-sectional area for current flow. This raises the question of whether this reduction increases resistance, particularly in electric machines like motors. While some believe the effect is negligible in metals due to high electron density, others express curiosity about its implications for motor efficiency and coil design. The discussion highlights a lack of practical experimentation due to the absence of necessary equipment, leading to a desire for deeper understanding. Overall, the significance of the Hall effect on resistance remains a topic of inquiry among physics enthusiasts.
kneeslider
Messages
7
Reaction score
0
The charge carriers in a current carrying wire subjected to a magnetic field will move to a side due to the Hall effect. But doesn't that also decrease the effective cross section area through which the charge carriers are moving? Does the resistance increase? If so, how significant is it in electric machines like motors?
 
Engineering news on Phys.org
74 views, but no replys. But, I need this answer:(
 
kneeslider said:
The charge carriers in a current carrying wire subjected to a magnetic field will move to a side due to the Hall effect. But doesn't that also decrease the effective cross section area through which the charge carriers are moving? Does the resistance increase? If so, how significant is it in electric machines like motors?

What is the context of the question? Is it for schoolwork?
 
No, not for school work. It's a burning curiosity. School is closed for the summer, so it's not easy to ask the professors. That's why I am here. I can't seem to wrap up the theories to actually carry out the calculations (I am a physics major and have done just one ENM course). I have a coil with high enough resistance to run the test from a home power supply and multimeters, but don't have a magnet to run the test. I will appreciate any sort of answer and an explanation- with or without the math.

If the effect was significant, people could have made more efficient motors with coils of rectangular cross section. I have never seen such a motor, so I presume the effect is not significant. But, I am still don't feel satiated without a proper explanation.
 
kneeslider said:
No, not for school work. It's a burning curiosity. School is closed for the summer, so it's not easy to ask the professors. That's why I am here. I can't seem to wrap up the theories to actually carry out the calculations (I am a physics major and have done just one ENM course). I have a coil with high enough resistance to run the test from a home power supply and multimeters, but don't have a magnet to run the test. I will appreciate any sort of answer and an explanation- with or without the math.

If the effect was significant, people could have made more efficient motors with coils of rectangular cross section. I have never seen such a motor, so I presume the effect is not significant. But, I am still don't feel satiated without a proper explanation.

I'm no expert on the Hall Effect, but I believe that it is pretty low in metals because the density of conduction electrons is high. Note how the Hall Voltage ratios inversely with the density of the carriers:

http://en.wikipedia.org/wiki/Hall_effect

BTW, square cross-section wires are sometimes use in coils (I don't know about motors), because the coil packing is more efficient.
 
Thanks. I still have a lot to understand. What I am suggesting is, due to the Hall effect, the current in the coil will decrease. The same number of charge carriers have to pass through a smaller area (the carriers are getting deflected to a side). I=neA(Vd). "A-Area" will decrease, but (Vd-drift velocity) will not increase proportionally as the carriers have more obstructions to their motion.

I cannot relate it to the Hall voltage formula. Perhaps I need to start at a more basic level, and carry out some weird integrations. I don't know. I will keep on reading. Thanks.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...

Similar threads

Back
Top