Effect of Hall effect on resistance

AI Thread Summary
The Hall effect causes charge carriers in a current-carrying wire to deflect to one side when subjected to a magnetic field, potentially reducing the effective cross-sectional area for current flow. This raises the question of whether this reduction increases resistance, particularly in electric machines like motors. While some believe the effect is negligible in metals due to high electron density, others express curiosity about its implications for motor efficiency and coil design. The discussion highlights a lack of practical experimentation due to the absence of necessary equipment, leading to a desire for deeper understanding. Overall, the significance of the Hall effect on resistance remains a topic of inquiry among physics enthusiasts.
kneeslider
Messages
7
Reaction score
0
The charge carriers in a current carrying wire subjected to a magnetic field will move to a side due to the Hall effect. But doesn't that also decrease the effective cross section area through which the charge carriers are moving? Does the resistance increase? If so, how significant is it in electric machines like motors?
 
Engineering news on Phys.org
74 views, but no replys. But, I need this answer:(
 
kneeslider said:
The charge carriers in a current carrying wire subjected to a magnetic field will move to a side due to the Hall effect. But doesn't that also decrease the effective cross section area through which the charge carriers are moving? Does the resistance increase? If so, how significant is it in electric machines like motors?

What is the context of the question? Is it for schoolwork?
 
No, not for school work. It's a burning curiosity. School is closed for the summer, so it's not easy to ask the professors. That's why I am here. I can't seem to wrap up the theories to actually carry out the calculations (I am a physics major and have done just one ENM course). I have a coil with high enough resistance to run the test from a home power supply and multimeters, but don't have a magnet to run the test. I will appreciate any sort of answer and an explanation- with or without the math.

If the effect was significant, people could have made more efficient motors with coils of rectangular cross section. I have never seen such a motor, so I presume the effect is not significant. But, I am still don't feel satiated without a proper explanation.
 
kneeslider said:
No, not for school work. It's a burning curiosity. School is closed for the summer, so it's not easy to ask the professors. That's why I am here. I can't seem to wrap up the theories to actually carry out the calculations (I am a physics major and have done just one ENM course). I have a coil with high enough resistance to run the test from a home power supply and multimeters, but don't have a magnet to run the test. I will appreciate any sort of answer and an explanation- with or without the math.

If the effect was significant, people could have made more efficient motors with coils of rectangular cross section. I have never seen such a motor, so I presume the effect is not significant. But, I am still don't feel satiated without a proper explanation.

I'm no expert on the Hall Effect, but I believe that it is pretty low in metals because the density of conduction electrons is high. Note how the Hall Voltage ratios inversely with the density of the carriers:

http://en.wikipedia.org/wiki/Hall_effect

BTW, square cross-section wires are sometimes use in coils (I don't know about motors), because the coil packing is more efficient.
 
Thanks. I still have a lot to understand. What I am suggesting is, due to the Hall effect, the current in the coil will decrease. The same number of charge carriers have to pass through a smaller area (the carriers are getting deflected to a side). I=neA(Vd). "A-Area" will decrease, but (Vd-drift velocity) will not increase proportionally as the carriers have more obstructions to their motion.

I cannot relate it to the Hall voltage formula. Perhaps I need to start at a more basic level, and carry out some weird integrations. I don't know. I will keep on reading. Thanks.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...

Similar threads

Back
Top