It's at least mentioned in the context of GR at
http://www.fourmilab.ch/gravitation/orbits/. This is pretty much taken from the textbook "Gravitation" by Misner, Thorne, Wheeler which goes into more detail along the same lines.
The fundamental idea here is that a body orbiting a central mass obeys certain differential equations, known as the geodesic equations. Furthermore, due to the presence of symmetries of the problem, certain quantities of the orbital motion analogous to Newtonian energy and angular momentum are conserved.
The term is also sometimes used in the context of analyzing Newtonian orbits. There are some references in Goldstein, "Classical mechanics", I think, but I haven't found any references for the Newtonian usage online. (The idea is definitely disucssed in Goldstein - I think the name is used as well, but I'm not positive).
In the Newtonain version of "effective potential", one observes that the differential equation for the radial part of the motion of a body orbiting a central mass can be separated into two different differential equations (i.e. the equations are separable) - one for the radial part of the motion, and the other for the angular part. The differential equation for only the radial part of the motion is a 1-d problem that can be physically re-interpreted as a mass and a (fictitious) non-linear spring. The nonlinear spring can be modeled by an "effective potential".
The GR usage is very similar - the "effective potential" is similar to the above fictitious 1-d potential in the Newtonian case. The "energy at infinity" in GR is more closely analogous to the usual Newtonian potential (but one must be careful not to assume the analogy goes too far).
I hope this helps some - I've tried to be clear, but it's early in the morning here :-(. I've got to run now, but I'll check back later.