mateomy
- 305
- 0
The problem posed is:
Evaluate
<br /> \sum_{i=1}^{n} (2i + 2^i)<br />
I know that I can break the summation down to this:
<br /> 2\sum_{i=1}^{n} i\, +\, 2\sum_{i=1}^{n}1^i<br />
and then after using some Fundamental Theorems...
<br /> =2\Bigg(\frac{n(n+1)}{2}\Bigg) + 2^n<br />
I can't seem to get it to look like my answer key which is...
<br /> 2^{n+1} + n^2 + n-2<br />
Clearly I am doing something wrong, I know I can expand my last step but when I do, it doesn't look anything close to what the book is showing me. Particularly, where are they getting the n-2 ? Where is my step wrong? THanks in advance for any help.
Evaluate
<br /> \sum_{i=1}^{n} (2i + 2^i)<br />
I know that I can break the summation down to this:
<br /> 2\sum_{i=1}^{n} i\, +\, 2\sum_{i=1}^{n}1^i<br />
and then after using some Fundamental Theorems...
<br /> =2\Bigg(\frac{n(n+1)}{2}\Bigg) + 2^n<br />
I can't seem to get it to look like my answer key which is...
<br /> 2^{n+1} + n^2 + n-2<br />
Clearly I am doing something wrong, I know I can expand my last step but when I do, it doesn't look anything close to what the book is showing me. Particularly, where are they getting the n-2 ? Where is my step wrong? THanks in advance for any help.
Last edited: