It's of course independent of the picture. The covariant time derivative of operators, representing observables, is given by
\frac{\mathrm{D} \hat{A}}{\mathrm{D} t}=\mathring{\hat{A}}=\frac{1}{\mathrm{i} \hbar} [\hat{A},\hat{H}],
where I have assumed that there is no explicit time dependence.
For a Hamiltonian that is not explicitly time dependent you thus find
\mathring{\hat{H}}=\frac{1}{\mathrm{i} \hbar} [\hat{H},\hat{H}]=0.
If, further, you have the motion of a particle in an external (time-independent) potential, you have
\hat{H}=\frac{\hat{\vec{p}}^2}{2m} + V(\hat{\vec{x}}),
and from the Heisenberg algebra, you can easily deduce
\mathring{\hat{\vec{p}}}= \frac{1}{\mathrm{i} \hbar} <br />
\left [\hat{\vec{p}},V(\hat{\vec{x}}) \right]=-\vec{\nabla} V(\hat{\vec{x}}).
From this it follows
\frac{\mathrm{D}}{\mathrm{D} t} \frac{\hat{\vec{p}}^2}{2m} = \frac{1}{\mathrm{i} \hbar 2m} \left (\hat{\vec{p}} \cdot [\hat{\vec{p}},V(\hat{\vec{x}})]+[\vec{p},V(\hat{\vec{x}})] \cdot \hat{\vec{p}} \right ) = -\frac{1}{2m} \left (\hat{\vec{p}} \cdot \vec{\nabla} V(\hat{\vec{x}}) + \vec{\nabla} V(\hat{\vec{x}}) \cdot \hat{\vec{p}} \right).
Ehrenfests theorem tells you that for any state \hat{R} in any picture of time evolution you have
\frac{\mathrm{d}}{\mathrm{d} t} \langle A \rangle=\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{Tr} (\hat{R} \hat{A})=\mathrm{Tr} (\hat{R} \mathring{\hat{A}}).
Note that the Averaging goes over \mathring{\hat{A}}, and the equations of motion for the averages are in general not identical with the classical equations of motion for the average values. That's the case only for the linear oscillator or for the motion in a constant force field, because only then \langle \vec{\nabla} V(\vec{x}) \rangle=\vec{\nabla} V(\langle \vec{x} \rangle).