JohnnyGui
- 802
- 51
I was reffering to your answer "No, it can't" in your previous post #86 when I asked "Does this formula take into account the number of possible quantum states at that particular energy state ##Ei##?"PeterDonis said:Can you give a specific quote? It's been a while
PeterDonis said:Can you give a reference? (Preferably a written one, not a video; it takes a lot more time to extract the relevant information from a video than it does from a written article or paper.)
Ok, I couldn't find the exact way on paper as how the lecturer did it, but I'll try to write a summary of what he did since I'm curious whether his method is correct or not. His method does result in the correct Maxwell's Distribution formula.
Boltzmann derived classically that the number of particles ##n_i## with a particular discrete energy level ##E_i## is:
$$n_i = \frac{N}{\sum_{i=0}^\infty e^{\frac{-E_i}{k_B}}} \cdot e^{\frac{-E_i}{k_B}}$$
I was able to derive this one.
Furthermore, I tried to derive by myself the number of particles if energy is considered continuous; let's call this number ##n## to separate it from Boltzmann's ##n_i## that is used for discrete energylevels. I deduced that ##n## is equal to the Density of quantum states function ##D(E)## times ##dE## multiplied by some function ##F'(E)## times ##dE##. The ##F'(E)## is the number of particles per 1 quantum state per 1 ##E##; so it's basically the particle number density at a particular ##E## per 1 quantum state of that ##E##. Both ##D_E## and ##F'(E)## are derivatives of cumulative functions.
We already discussed that ##D(E) \cdot dE = \frac{V \cdot 2^{2.5}\cdot \pi \cdot m^{1.5}}{h^3} \cdot \sqrt{E} \cdot dE##. So that ##n## would be:
$$n = D(E) \cdot dE \cdot F'(E) \cdot dE = \frac{V \cdot 2^{2.5}\cdot \pi \cdot m^{1.5}}{h^3} \cdot \sqrt{E} \cdot dE \cdot F'(E) \cdot dE$$
Here comes the part that I don't get. The lecturer in the video states all of a sudden that:
$$F'(E) \cdot dE = \frac{N}{\sum_{i=0}^\infty e^{\frac{-E_i}{k_B}}} \cdot e^{\frac{-E_i}{k_B}}$$
So according to him, the number of particles in a continuous energy spectrum is given by:
$$n = \frac{V \cdot 2^{2.5}\cdot \pi \cdot m^{1.5}}{h^3} \cdot \sqrt{E} \cdot \frac{N}{\sum_{i=0}^\infty e^{\frac{-E_i}{k_B}}} \cdot e^{\frac{-E_i}{k_B}} \cdot dE$$
Notice how he basically combined Boltzmann's classical formula (with discrete energylevels) with the Density of quantum states function ##D(E)##.
You can also see http://hep.ph.liv.ac.uk/~hock/Teaching/StatisticalPhysics-Part3-Handout.pdf(on sheet number ##8##) that this is done more or less the same way, combining the Boltzmann factor with the States Density.
I have continued working with that formula nonetheless. Integrating it to infinity gives me a complex constant ##C## that should be equal to the total number of particles ##N##. The probability of finding a particle with energy between ##E ≥ E + dE## is equal to ##\frac{n}{N}##. Writing ##n## in terms of the previous formula and ##N## in terms of ##C## and then simplifying it gives me the probability density as a function of ##E## that is exactly the same as Wiki states:
I'd really like to understand how it is allowed to substitute a continuous formula ##F'(E)## with the classical Boltzmann's formula in which energylevels are considered discrete, combine it with quantum states density formula, and then get a valid formula out of it. Is there a way to explain this?