Eigenblades and the Geometric Algebra of Spinors

kryptyk
Messages
41
Reaction score
0
I've been looking into Geometric Algebra approaches to linear transformations and have found it to be MUCH nicer than the conventional matrix approaches for certain kinds of transformations. Moreover, I find it much more intuitive, particularly in its way of dealing with complex numbers.

For instance, consider some linear operator M from R^n to R^n. If all its eigenvalues are real, it is easy enough to see how it acts on linear subspaces. But how are we to geometrically interpret complex eigenvalues and their corresponding eigenvectors?

If n=2, this is relatively simple. We can treat complex eigenvalues as scalings and rotations on the plane. In fact, we can use the following isomorphism between C and 2 \times 2 antisymmetrical matrices over R \;:

a + i b \longleftrightarrow \left(\begin{array}{cc}a&-b\\b&a\end{array}\right)

But the use of eigenvectors with complex-valued coordinates can get quite ugly - especially when dealing with spaces of greater dimension than 2. Especially if we're only interested in how the operator acts on real vectors.

However, while we cannot generally identify rotations with real eigenvectors, we can identify rotations with real eigenbivectors where the eigenbivectors represent plane elements rather than line elements. The corresponding eigenvalues then express a scaling of areas rather than lengths. This then extends naturally to higher dimensions.

Moreover, GA provides a way to express any linear map as a geometric product without the use of any matrices. Certain kinds of maps, such as rotations and reflections, afford extremely simple representations in this way that not only more clearly illustrate the essence of the map but also are much less tedious to work with than matrices. These ideas are so extremely powerful I'm surprised they are seldom mentioned in the literature.

I was wondering if anyone here is familiar with these methods, and even if not, if anyone would be interested in looking further into these methods with me.

Thanks!
 
Physics news on Phys.org
Formally the extension of a real linear space ##V##, e.g. a matrix space, can be seen as a tensor product:
$$
V_\mathbb{C} = V \otimes_\mathbb{R} \mathbb{C}
$$
It is called complexification and a standard method to go from real to complex.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top