1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Eigenspace help

  1. Apr 14, 2010 #1
    [tex]\begin{bmatrix}
    3 & 2\\
    4 & 1
    \end{bmatrix}[/tex]
    [tex]det(A-\lambda I)=\begin{vmatrix}
    3-\lambda & 2\\
    4 & 1-\lambda
    \end{vmatrix}=(3-\lambda)(1-\lambda)-8=\lambda^2-4\lambda-5[/tex]
    [tex]\lambda_{1}=5[/tex] and [tex]\lambda_{2}=-1[/tex]
    When [tex]\lambda=5[/tex], [tex]\begin{bmatrix}
    -2 & 2\\
    4 & -4
    \end{bmatrix}\Rightarrow \begin{bmatrix}
    1 & -1\\
    0 & 0
    \end{bmatrix}[/tex]
    The eigenspace for [tex]\lambda_{1}[/tex] is [tex]\begin{bmatrix}
    1\\
    1
    \end{bmatrix}[/tex]
    When [tex]\lambda=-1[/tex], [tex]\begin{bmatrix}
    4 & 2\\
    4 & 2
    \end{bmatrix}\Rightarrow \begin{bmatrix}
    1 & 0\\
    0 & 1
    \end{bmatrix}[/tex]
    The eigenspace for[tex]\lambda_{2}[/tex] is [tex]\begin{bmatrix}
    0\\
    0
    \end{bmatrix}[/tex]

    I don't know what is going wrong but my second Eigenspace is wrong compared to the books answer which is [tex]\begin{bmatrix}
    1\\
    -2
    \end{bmatrix}[/tex]
     
  2. jcsd
  3. Apr 14, 2010 #2

    Mark44

    Staff: Mentor

    Re: Eigenspace

    Your mistake is above. The [4 2; 4 2] matrix doesn't row reduce to the identity matrix. Try again.
    Each matrix for calculating the eigenspace can't reduce to the identity; otherwise its determinant would not be zero.
     
  4. Apr 14, 2010 #3
    Re: Eigenspace

    I had a -2 entered into my calc.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Eigenspace help
  1. Eigenspace of A? (Replies: 1)

  2. Kernel of eigenspace. (Replies: 15)

Loading...