The initial vectors if the stansard basis were
|1,1\rangle =\left(\begin{array}{c} 1\\0\\0\end{array}\right)
|1,0\rangle =\left(\begin{array}{c} 0\\1\\0\end{array}\right)
|1,-1\rangle =\left(\begin{array}{c} 0\\0\\1\end{array}\right)
Now,the operator \hat{\vec{S}}\cdot\vec{n} accomplishes a rotation of each of those vectors.Follwing [1],the rotation matrix is
\mathcal{D}^{(1)}_{m,m'}\left(\alpha,\beta,\gamma\right)=\left(\begin{array}{ccc} \frac{1+\cos\beta}{2}e^{-i(\alpha+\gamma)} & -\frac{\sin\beta}{\sqrt{2}}e^{-i\alpha} & \frac{1-\cos\beta}{2}e^{-i(\alpha-\gamma)} \\ \frac{\sin\beta}{\sqrt{2}} e^{-i\gamma} & \cos\beta & -\frac{\sin\beta}{\sqrt{2}} e^{i\gamma} \\ \frac{1-\cos\beta}{2}e^{i(\alpha-\gamma)} & \frac{\sin\beta}{\sqrt{2}}e^{i\alpha} & \frac{1+\cos\beta}{\sqrt{2}} e^{i(\alpha+\gamma)} \end{array}\right)
with the adjustments
\left\{\begin{array}{c} \alpha\longrightarrow \phi \\ \beta\longrightarrow \theta \\ \gamma\longrightarrow 0 \end{array} \right
Apply the rotation matrix on each of the standard basis vectors and you'll get the new vectors.
Check they are eigenvectors for the initial matrix.
Daniel.
-----------------------------------------------------------
[1]Galindo & Pascual,"Quantum Mechanics I",Springer Verlag,1990.