Eigenvalues, eigenvectors question

jhson114
Messages
82
Reaction score
0
1). suppose that y1, y2, y3 are the eigenvalues of a 3 by 3 matrix A, and suppose that u1, u2,u3 are corresponding eigenvectors. Prove that if { u1, u2, u3 } is a linearly independent set and if p(t) is the characteristic polynomial for A, then p(A) is the zero matrix.

I thought cayley-hamilton theorem simply states that if p(t) is the characteristic polynomial for A, then p(A) is the zero matrix. do the eigenvectors have to be learly independent for this to be true? i thought it was true in all cases.
 
Physics news on Phys.org
It is true in all cases. The problem is a special case and is thus easier to prove. hint: the matrix is diagnalizable
 
Man... I had linear algebra last semester, but i think our notation is different, what is meant by p(A)?
 
Over the reals, the special case implies the general one, as a polynomial that vanishes on a dense set of matrices (diagonalizable ones) also vanishes on all matrices.
 
Don't diagonalize would be my advice.

I think the question is getting at this:

We know p(t)=(t-y1)(t-y2)(t-y3)

and that u1,u2, and u3 are linearly independent (so far no one has used this fact explicitly).

As they are LI in R^3 they are a basis. so we can write any v in R^3 as a combination of the u1,u2,u3, and p(A) must annihilate the vector since it annihilates each u1,u2,u3 individually.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top