Eigenvectors of a matrix in Jordan Normal Form

Ted123
Messages
428
Reaction score
0
Let A =\begin{bmatrix} -14 & 5 & -2 & 1 \\ -38 & 13 & -4 & 5 \\ 25 & -10 & 7 & 5 \\ -17 & 5 & -2 & 4 \end{bmatrix} .

The Jordan Normal Form of A is J =\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} .

Now, I've been told that eigenvectors can be read off as the columns with no 1's on the superdiagonal.

So for the eigenvalue 2, an eigenvector is \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} and for the eigenvalue 3, an eigenvector is \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} .

But \text{Ker} (A-2I) = \left\{ \begin{bmatrix} w \\ 3w \\ 0 \\ w \end{bmatrix} : w\in\mathbb{R} \right\} = \text{span} \left\{ \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}

but clearly \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \notin \text{Ker} (A-2I)

All eigenvectors should be in the kernel so why isn't this - isn't it an eigenvector?

Similarly \text{Ker} (A-3I) = \left\{ \begin{bmatrix} 0 \\ \frac{2}{5}z \\ z \\ 0 \end{bmatrix} : z\in\mathbb{R} \right\} = \text{span} \left\{ \begin{bmatrix} 0 \\ 2 \\ 5 \\ 0 \end{bmatrix} \right\}

but clearly \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \notin \text{Ker} (A-3I)
 
Physics news on Phys.org
Ted123 said:
Let A =\begin{bmatrix} -14 & 5 & -2 & 1 \\ -38 & 13 & -4 & 5 \\ 25 & -10 & 7 & 5 \\ -17 & 5 & -2 & 4 \end{bmatrix} .

The Jordan Normal Form of A is J =\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} .

Now, I've been told that eigenvectors can be read off as the columns with no 1's on the superdiagonal.

So for the eigenvalue 2, an eigenvector is \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} and for the eigenvalue 3, an eigenvector is \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} .

But \text{Ker} (A-2I) = \left\{ \begin{bmatrix} w \\ 3w \\ 0 \\ w \end{bmatrix} : w\in\mathbb{R} \right\} = \text{span} \left\{ \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}

but clearly \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \notin \text{Ker} (A-2I)

All eigenvectors should be in the kernel so why isn't this - isn't it an eigenvector?

Similarly \text{Ker} (A-3I) = \left\{ \begin{bmatrix} 0 \\ \frac{2}{5}z \\ z \\ 0 \end{bmatrix} : z\in\mathbb{R} \right\} = \text{span} \left\{ \begin{bmatrix} 0 \\ 2 \\ 5 \\ 0 \end{bmatrix} \right\}

but clearly \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \notin \text{Ker} (A-3I)

The vectors (1,0,0,0)^T and (0,0,1,0)^T are eigenvectors of J, not of A.

RGV
 
Ray Vickson said:
The vectors (1,0,0,0)^T and (0,0,1,0)^T are eigenvectors of J, not of A.

RGV

Of course, J=P^{-1}AP \neq A for some change of basis matrix P.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top