Derivator
- 147
- 0
Hi,
I've written a little fortran code that computes the three Eigenvectors \vec{v}_1, \vec{v}_2, \vec{v}_3 of the inertia tensor of a N-Particle system.
Now I observed something that I cannot explain analytically:
Assume the position vector \vec{r}_i of each particle to be given with respect to the center of mass of the system.
Then define three new vectors \vec{\omega}_j := (\vec{v}_j\times\vec{r}_1,\dots,\vec{v}_j\times\vec{r}_N) where j=1,...,3. These new vectors are of length 3*N.
Now, for a non-linear configuration of the \vec{r}_i and N>=3, the \vec{\omega}_j seem to be mutually orthogonal, that is \vec{\omega}_j \cdot \vec{\omega}_i = 0 for i \neq j (At least, I obtain this numerically up to machine precision)
I have no analytical explanation for this...
The most promising ansatz I tried so far is:
\vec{\omega}_i \cdot \vec{\omega}_j = \sum_{l=1}^N (\vec{v}_i\times \vec{r}_l)(\vec{v}_j \times \vec{r}_l) = \sum_{l=1}^N (\vec{v}_i\cdot\vec{v}_j)(\vec{r}_l\cdot\vec{r}_l)-(\vec{v}_i\cdot\vec{r}_l)(\vec{r}_l\cdot\vec{v}_j)= -\sum_{l=1}^N (\vec{v}_i\cdot\vec{r}_l)(\vec{r}_l\cdot\vec{v}_j)
Where I have used the relation
(\mathbf{a \times b})\mathbf {\cdot}(\mathbf{c}\times \mathbf{d}) = (\mathbf{a \cdot c})(\mathbf{b \cdot d}) - (\mathbf{a \cdot d})(\mathbf{b \cdot c})
(see: http://en.wikipedia.org/wiki/Quadruple_product)
and the fact that the eigenvectors of the inertia tensor are mutually orthogonal:
\vec{v}_i\cdot\vec{v}_j = 0
Unfortunately, this is the point where I'm stuck. I don't see why -\sum_{l=1}^N (\vec{v}_i\cdot\vec{r}_l)(\vec{r}_l\cdot\vec{v}_j) should vanish.derivator
I've written a little fortran code that computes the three Eigenvectors \vec{v}_1, \vec{v}_2, \vec{v}_3 of the inertia tensor of a N-Particle system.
Now I observed something that I cannot explain analytically:
Assume the position vector \vec{r}_i of each particle to be given with respect to the center of mass of the system.
Then define three new vectors \vec{\omega}_j := (\vec{v}_j\times\vec{r}_1,\dots,\vec{v}_j\times\vec{r}_N) where j=1,...,3. These new vectors are of length 3*N.
Now, for a non-linear configuration of the \vec{r}_i and N>=3, the \vec{\omega}_j seem to be mutually orthogonal, that is \vec{\omega}_j \cdot \vec{\omega}_i = 0 for i \neq j (At least, I obtain this numerically up to machine precision)
I have no analytical explanation for this...
The most promising ansatz I tried so far is:
\vec{\omega}_i \cdot \vec{\omega}_j = \sum_{l=1}^N (\vec{v}_i\times \vec{r}_l)(\vec{v}_j \times \vec{r}_l) = \sum_{l=1}^N (\vec{v}_i\cdot\vec{v}_j)(\vec{r}_l\cdot\vec{r}_l)-(\vec{v}_i\cdot\vec{r}_l)(\vec{r}_l\cdot\vec{v}_j)= -\sum_{l=1}^N (\vec{v}_i\cdot\vec{r}_l)(\vec{r}_l\cdot\vec{v}_j)
Where I have used the relation
(\mathbf{a \times b})\mathbf {\cdot}(\mathbf{c}\times \mathbf{d}) = (\mathbf{a \cdot c})(\mathbf{b \cdot d}) - (\mathbf{a \cdot d})(\mathbf{b \cdot c})
(see: http://en.wikipedia.org/wiki/Quadruple_product)
and the fact that the eigenvectors of the inertia tensor are mutually orthogonal:
\vec{v}_i\cdot\vec{v}_j = 0
Unfortunately, this is the point where I'm stuck. I don't see why -\sum_{l=1}^N (\vec{v}_i\cdot\vec{r}_l)(\vec{r}_l\cdot\vec{v}_j) should vanish.derivator
Last edited: