How to Calculate Eigenvectors of the Unperturbed Hamiltonian?

captainjack2000
Messages
96
Reaction score
0

Homework Statement


The Hamiltonian of a system has the matrix representation

H=Vo*(1-e , 0 , 0
0 , 1 , e
0 , e , 2)

Write down the eigenvalues and eigenvectors of the unperturbed Hamiltonian (e=0)

Homework Equations


when unperturbed the Hamiltonian will reduce to Vo* the 3x3 matrix with 1,1,2 along the diagonal. the eigenvalues are therefore Vo,Vo,2Vo (right??)

I am a bit confused about how to calculate the eigenvectors. I have tried looking this up but still get confused. Would they not all be zero since if you sub the eigenvalue Vo back into matrix you would get for the first row

Vo(1-Vo,0,0) * (x,y,z) = (0,0,0) where (x,y,z) is a vertical matrix?
 
Physics news on Phys.org
What is the problem then? You should know that the 0 vector is the trivial solution, so it is not count for the eigenvector cos it cannot span any solution space.
 
So how would you calculate the other eigenvectors. Sorry I am still confused.
 
for e=0,
H=
(Vo , 0 , 0
0 , Vo , 0
0 , 0 , 2Vo)
eigenvalue is Vo,Vo,2Vo as you said. So what is the standard procedure to find the eigenvector? I assume that you should take at least one linear algebra before you take QM.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top