A Einbein as Lagrange Multiplier: How Does it Work?

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Let ##g_{\mu \nu}(x)## be a time-independent metric. A photon following a curve ##\Gamma## has action\begin{align*}
I[x,e]= \dfrac{1}{2} \int_{\Gamma} e^{-1}(\lambda) g_{\mu \nu}(x)\dot{x}^{\mu} \dot{x}^{\nu} d\lambda
\end{align*}with ##e(\lambda)## an independent function of ##\lambda## (an einbein). The canonical momentum is ##\partial L / \partial \dot{x}^{\mu} = e^{-1}(\lambda) \dot{x}_{\mu}## which yields a conserved energy ##-E \equiv -e^{-1}(\lambda) \dot{t}## since the Lagrangian does not depend on time. The Hamiltonian is\begin{align*}
H = \dfrac{1}{2} e^{-1}(\lambda) g_{\mu \nu}(x) \dot{x}^{\mu} \dot{x}^{\nu} = \dfrac{1}{2}e(\lambda)\left( - E^2 + \mathbf{p}^2 \right)
\end{align*}From this follows the mass-shell equation ##E^2 = \mathbf{p}^2##. Why is this? The einbein field ##\dfrac{1}{2}e(\lambda)## is supposedly acting as a Lagrange multiplier but my variational calculus is rusty. (The next step will be to Legendre transform the cyclic variables only to determine the Routhian).
 
Last edited:
Physics news on Phys.org
Actually I think it makes sense, that ##-E^2 + \mathbf{p}^2 \equiv F = 0## is just a standard constraint between the coordinates and the canonical momentum when re-written.
 
You can make ##e(\lambda)## a Lagrange multiplier. Then you have in addition the variation of the action wrt. ##e##, and this gives the desired constraint ##g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}## for the motion of a massless particle.
 
  • Like
Likes ergospherical
Why is this? It's per construction, so you can write down an action which also applies to massless particles and is easy to quantize. In string theory I'd call this trick "switching from Nambu-Goto to Polyakov" :P
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top