Elastic Collision of Two Boxes: Kinetic Energy Transfer

AI Thread Summary
In the discussion on the elastic collision of two boxes, the initial conditions include a 5 g box moving at 20 cm/s colliding with a stationary 10 g box. The equations of motion and conservation of momentum are applied to determine the final velocities of both boxes after the collision. The calculations yield a final velocity of approximately -0.067 m/s for the 5 g box and 0.133 m/s for the 10 g box. Additionally, the kinetic energy transfer is analyzed, with the user questioning the correct method for calculating the fraction of kinetic energy transferred to the 10 g box. The discussion emphasizes the need to solve the equations systematically to find accurate results for both final velocities and energy transfer.
teckid1991
Messages
4
Reaction score
0

Homework Statement


A 5 g box moving to the right at 20 cm/s makes an elastic head on collision with a 10 g box initially at rest.

Mass 1 = .005 kg
initial Velocity 1 = .2 m/s
Mass 2 = .01 kg
initial Velocity 2 = 0 m/s

a.) what velocity does each box have after the collision?
b.) what fraction of the initial kinetic engergy is transferred to the 10 g box?

Homework Equations


- (initial velocity 1 - initial velocity 2) = velocity final 2 - velocity final 1
Mass 1 (initial velocity 1) + Mass 2 (initial velocity 2) = Mass 1 (velocity final 1) + Mass 2 (velocity final 2)
Kinetic energy = .5(mass)(velocity)2

The Attempt at a Solution



a.) for the final velocities...
- (Vo1 - V02) = Vf2 - Vf1
- (0 - .2) = Vf2 - Vf1
.2 + Vf1 = Vf2

for Vf1...
M1V01 + M2V02 = M1Vf1 + M2Vf2
(.005)(.2) + (.01)(0) = (.005)Vf1 + (.01)(.2 + Vf1)
.001 = .015(Vf1) + .002
-.001 = .015(Vf1)
-.067 [rounded number] = Vf1

plug into first problem
.2 + Vf1 = Vf2
.133 = Vf2

b.) \sum K0 = \sum Kf [not sure if this is the correct method for solving this equation...]
K01 + K02 = Kf1 + Kf2
.5(.005)(.2)2 + .5(.01)(0)2 = .5(.005)(-.067)2 + .5(.01)(.133)2

Im not sure if its K01/Kf2 or K01/ (Kf1 + Kf2)
 
Physics news on Phys.org
a.) for the final velocities...
- (Vo1 - V02) = Vf2 - Vf1
- (0 - .2) = Vf2 - Vf1
.2 + Vf1 = Vf2
The above is true when the masses are equal.
 
Oh I see. I'm unsure now how this would work since there are 2 variables that I need to find.
 
Use (.005)(.2) + (.01)(0) = (.005)Vf1 + (.01)(Vf2) ... (1)
and .5(.005)(.2)2 + .5(.01)(0)2 = .5(.005)(Vf1)2 + .5(.01)(Vf2)2 ...(2)
Solve the above equations to get the final velocities.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top