Elastic Collisions and Conservation of Momentum

AI Thread Summary
In an elastic collision problem, a 1 kg car moving at 2 m/s collides with a stationary car, resulting in the first car rebounding at 1 m/s. The conservation of momentum and kinetic energy principles are applied to determine the mass and speed of the second car. The initial and final momenta are calculated, leading to the conclusion that the second car must have a mass of 3 kg and moves at a speed of 1 m/s after the collision. The calculations confirm that both momentum and kinetic energy are conserved in this scenario. The solution effectively demonstrates the application of fundamental physics concepts to solve the problem.
tehjinxman
Messages
2
Reaction score
0

Homework Statement


A 1 Kg car moving at 2m/s collides elastically with a stationary car. The first car rebounds opposite to the original direction at 1m/s and the second car moves off in the original direction of the first car.
A) What is the mass of the 2nd car
B) What is the speed of the 2nd car


Homework Equations


P = M*V
M1V1 + M2V2 = M1V`1 + M2V`2


The Attempt at a Solution


I have been beating my head against this problem for hours now. It seems like it should be incredibly easy, and simple to figure out, but I just can't make it click in my head.
So I have:
Car1-- Initial momentum = 2*1 = 2, Final momentum = -1*1 = -1
Car2-- Initial momentum = 0*M2 = 0, Final momentum = M2*v`2

Since momentum is conserved --> Car1i + Car2i = Car1f + Car2f --> 2+0 = -1 + 3
Total final momentum of Car2 is 3 in the positive direction.

(1*2) + (M2*0) = (-1*1) + (M2V`2)

Ive spent i don't know how many hours trying to use these two equations to find some equality with M2. I mean the momentum of Car 2 after the collision, clearly needs to be +3, but there are an infinite combination of numbers that multiply to 3. I feel as though i am missing something extremely simple.
 
Physics news on Phys.org
The collision is elastic, energy is conserved. Set up a second equation for conservation of kinetic energy.

ehild
 
So Ke1i = .5(1)(2^2) =2
Ke2i = 0
KeTotal = 2

Ke1f = .5(1)(-1^2) = 0.5
So Ke2f must = 1.5
KeTotal = 2

Ke1f+Ke2f = 2
.5 + (mv^2)/2 = 2
mv^2 = 3

Then compare MV = 3 and MV^2 = 3? So MV^2 = MV
Which means V must be 1m/s and M must be 3 Kg?
 
It is correct now ! :smile:

ehild
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top