I Electric and Magnetic Fields, Photons, Charges

Surya97
Messages
46
Reaction score
4
I know that magnetic fields create moving charges (an electric current) normal to the plane of the magnetic force lines. I also have heard that magnetic and electric fields create each other in a perpendicular direction to the other (badly worded). Electric currents are moving charges (usually electrons), but electric fields are propagated through lines of force, not in one direction. How are these equivalent? Also, if there are no charges in the area of the magnetic field (it is emitted from a ferromagnetic substance), then how does the magnetic field create moving charges?

I know that oscillating magnetic and electric fields is basically what EM radiation is. However, I cannot visualize light (a transverse wave with a finite amplitude, frequency and wavelength which travels in a single direction) as two fields that turn into each other rapidly. If that were true, then EM waves would be projected in all directions in a sphere from the source. If a photon is equivalent to a standing wave probability function, and photons move in a single direction, how does this make sense (as these two things are equivalent, but seem different)?
 
Physics news on Phys.org
Surya97 said:
I know that magnetic fields create moving charges (an electric current) normal to the plane of the magnetic force lines.

A changing magnetic field creates an electric field, not an electric current.

Surya97 said:
Electric currents are moving charges (usually electrons), but electric fields are propagated through lines of force, not in one direction. How are these equivalent?

They are not. An electric charge is a piece of matter with the property that it generates/affects the EM field around it. An electric field is the electric portion of the EM field.

Surya97 said:
I know that oscillating magnetic and electric fields is basically what EM radiation is. However, I cannot visualize light (a transverse wave with a finite amplitude, frequency and wavelength which travels in a single direction) as two fields that turn into each other rapidly. If that were true, then EM waves would be projected in all directions in a sphere from the source.

This isn't true, but unfortunately I lack the knowledge to really explain why. In any case, neither the electric nor magnetic portion of the EM radiation (EM wave) turns into the other. If that were true then the two portions would be 90 degrees out of phase with one another, such that when one is at maximum amplitude the other is at minimum. This is not the case. Both portions are in phase with one another and reach maximum and minimum amplitude at the same time.

Surya97 said:
If a photon is equivalent to a standing wave probability function, and photons move in a single direction, how does this make sense (as these two things are equivalent, but seem different)?

Honestly I wouldn't even begin to try to understand the details of how photons work until you get a better understanding of classical EM theory first. The idea that you can even say which path a photon took is problematic in quantum theory (problematic in that you can't!).
 
  • Like
Likes Surya97
Surya97 said:
but electric fields are propagated through lines of force, not in one direction.
This statement is nonsense. Electric and magnetic fields satisfy Maxwell's equations.

Surya97 said:
Also, if there are no charges in the area of the magnetic field (it is emitted from a ferromagnetic substance), then how does the magnetic field create moving charges?
It does not. Currents are necessary to create a magnetic field, but it is notgoing to be only where the currents are. Again, this is described by Maxwell's equations.
Surya97 said:
If that were true, then EM waves would be projected in all directions in a sphere from the source.
What makes you think this cannot be the case? Do you think the Sun only shines towards Earth?

However, it is not necessarily the case depending on how the light is created and focused.

Surya97 said:
If a photon is equivalent to a standing wave probability function, and photons move in a single direction, how does this make sense (as these two things are equivalent, but seem different)?
You really should not think in terms of photons here. They are among the absolutely most difficult particles to quantise. To put it short: no, photons are not waves of probability. No, photons do not move in a single direction. No, it does not make sense because you are using a mixture of popularised physics and trying to put pieces of it together. You will not learn physics in this way. You will learn physics by studying physics for real.
 
  • Like
Likes Surya97 and vanhees71
Surya97 said:
I know that magnetic fields create moving charges (an electric current) normal to the plane of the magnetic force lines. I also have heard that magnetic and electric fields create each other in a perpendicular direction to the other (badly worded). Electric currents are moving charges (usually electrons), but electric fields are propagated through lines of force, not in one direction. How are these equivalent? Also, if there are no charges in the area of the magnetic field (it is emitted from a ferromagnetic substance), then how does the magnetic field create moving charges?

I know that oscillating magnetic and electric fields is basically what EM radiation is. However, I cannot visualize light (a transverse wave with a finite amplitude, frequency and wavelength which travels in a single direction) as two fields that turn into each other rapidly. If that were true, then EM waves would be projected in all directions in a sphere from the source. If a photon is equivalent to a standing wave probability function, and photons move in a single direction, how does this make sense (as these two things are equivalent, but seem different)?
First of all there are not two fields but only one, the electromagnetic field. The split in electric and magnetic components is dependent on the frame of reference and chosen just for convenience of the calculation.

Then, do not even try to think about photons before you haven't understood the classical theory. Photons cannot be visualized as massless little billard balls but only described using relativistic quantum field theory, which tells you that there is not even a position operator in the literal sense for a single-photon state.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top