- 19,773
- 10,725
Definition/Summary
Electric and magnetic units have symbols which are (or begin with) a capital letter, but have names which begin with a small letter.
The units below (except for eV) are SI units.
dim. = dimension; M = mass; L = length; T = time; Q = charge.
Units such as A.s^{-1} have been written as fractions, to make easier comparison between different units, but this is generally bad practice, and is not to be copied.
Equations
Charge (dim. Q):
\text{C}\ \equiv\ \text{coulomb}
Current = charge/time = energy/magnetic flux (dim. Q/T):
\text{A}\ \equiv\ \text{amp (or ampere)}\ \equiv\ \frac{\text{C}}{\text{s}}\ \equiv\ \frac{\text{coulomb}}{\text{second}}\ \equiv\ \frac{\text{J}}{\text{Wb}}\ \equiv\ \frac{\text{joule}}{\text{weber}}
Magnetic flux = voltage.time = energy/current (dim. ML^2/QT):
\text{Wb}\ \equiv\ \text{weber}\ \equiv\ \text{V.s}\ \equiv\ \text{volt.second}\ \equiv\ \frac{\text{J.s}}{\text{C}}\ \equiv\ \frac{\text{joule.second}}{\text{coulomb}}
Magnetic pole-strength:
\text{A-m}\ \equiv\ \text{amp-metre}
Magnetic dipole moment = pole-strength.distance = current.area:
\text{A-m.m}\ \equiv\ \text{A.m}^2\ \equiv\ \text{amp-square metre}\ \equiv\ \frac{\text{J}}{\text{T}}\ \equiv\ \frac{\text{joule}}{\text{tesla}}
Magnetic intensity (\boldsymbol{H}) and magnetisation density (\boldsymbol{M}) = current/distance (dim. Q/LT):
\frac{\text{A}}{\text{m}}\ \equiv\ \frac{\text{amp-turns}}{\text{metre}}\ \equiv\ \frac{\text{amp}}{\text{metre}}\ \equiv\ \frac{\text{A-m.m}}{\text{m}^3}\ \equiv\ \frac{\text{magnetic dipole moment}}{\text{volume}}
Electric potential = voltage = energy/charge = emf (dim. ML^2/QT^2):
\text{V}\ \equiv\ \text{volt}\ \equiv\ \frac{\text{J}}{\text{C}}\ \equiv\ \frac{\text{joule}}{\text{coulomb}}\ \equiv\ \frac{\text{W.s}}{\text{C}}\ \equiv\ \frac{\text{watt.second}}{\text{coulomb}}\ \equiv\ \frac{\text{W}}{\text{A}}\ \equiv\ \frac{\text{watt}}{\text{amp}}
Power = voltage.current = energy/time (dim. ML^2/T^3):
\text{W}\ \equiv\ \text{watt}\ \equiv\ \frac{\text{J}}{\text{s}}\ \equiv\ \frac{\text{joule}}{\text{second}}\ \equiv\ \frac{\text{N.m}}{\text{s}}\ \equiv\ \frac{\text{Newton.metre}}{\text{second}}\ \equiv\ \text{V.A}\ \equiv\ \text{volt.amp}\ \equiv\ \Omega\text{.A}^2\ \equiv\ \text{ohm.amp}^2
Energy = voltage.charge (dim. ML^2/T^2):
\text{J}\ \equiv\ \text{joule}\ \equiv\ \text{CV}\ \equiv\ \text{coulomb.volt}\ \equiv\ \frac{\text{eV}}{1.602\ 10^{-19}}\ \equiv\ \frac{\text{electron.volt}}{1.602\ 10^{-19}}
Energy density = energy/volume = work done/volume = force/area = pressure (dim. M/LT^2):
\text{Pa}\ \equiv\ \text{pascal}\ \equiv\ \frac{\text{J}}{\text{m}^3}\ \equiv\ \frac{\text{joule}}{\text{metre}^3}\ \equiv\ \frac{\text{N}}{\text{m}^2}\ \equiv\ \frac{\text{N}}{\text{C}}\ \frac{\text{C}}{\text{m}^2}\ \equiv\ \frac{\text{N}}{\text{A.m}}\ \frac{\text{A}}{\text{m}}\ \equiv\ \frac{\text{Newton}}{\text{metre}^2}
Impedance (Z\ =\ R\ +\ jX) (resistance plus jreactance) = voltage/current = electric field per magnetic intensity (\boldsymbol{E}/\boldsymbol{H}) = power/current-squared = inductance/time = inductance.frequency (dim. ML^2/Q^2T):
\Omega\ \equiv\ \text{ohm}\ \equiv\ \frac{\text{V}}{\text{A}}\ \equiv\ \frac{\text{volt}}{\text{amp}}\ \equiv\ \frac{\text{W}}{\text {A}^2}\ \equiv\ \frac{\text{watt}}{\text{amp}^2}\ \equiv\ \frac{\text{H}}{\text {s}}\ \equiv\ \frac{\text{henry}}{\text{second}}
Conductance = current/voltage = capacitance/time = capacitance.frequency (dim. Q^2T/ML^2):
S\text{ or }\mho\ \equiv\ \text{siemens}\ \equiv\ \frac{\text{A}}{\text{V}}\ \equiv\ \frac{\text{amp}}{\text{volt}}\ \equiv\ \frac{\text{F}}{\text {s}}\ \equiv\ \frac{\text{farad}}{\text{second}}
Inductance = magnetic flux/current = voltage.time/current = energy.time-squared/charge-squared (dim. ML^2/Q^2):
<br /> \begin{eqnarray*}<br /> \text{H} & \equiv & \text{henry}\ \equiv\ \frac{\text{Wb}}{\text{A}}\ \equiv\ \frac{\text{weber}}{\text{amp}}\ \equiv\ \frac{\text{V.s}}{\text{A}}\ \equiv\ \frac{\text{volt.second}}{\text{amp}}\ \equiv\ \Omega\text{.s}\ \equiv\ \text{ohm.second}\\<br /> & \equiv & \frac{\text{J.s}^2}{\text{C}^2}\ \equiv\ \frac{\text{joule.second}^{\,2}}{\text{coulomb}^{\,2}}\ \equiv\ \frac{\text{s}^2}{\text{F}}\ \equiv\ \frac{\text{second}^{\,2}}{\text{farad}}<br /> \end{eqnarray*}
Capacitance = charge/voltage = current.time/voltage = charge-squared/energy (dim. Q^2T^2/ML^2):
<br /> \begin{eqnarray*}<br /> \text{F} & \equiv & \text{farad}\ \equiv\ \frac{\text{C}}{\text{V}}\ \equiv\ \frac{\text{coulomb}}{\text{volt}}\ \equiv\ \frac{\text{C}^2}{\text{J}}\ \equiv\ \frac{\text{coulomb}^{\,2}}{\text{joule}}\ \equiv\ \frac{\text{C}^{\,2}}{\text{N.m}}\ \equiv\ \frac{\text{coulomb}^2}{\text{Newton.metre}}\\<br /> & \equiv & \frac{\text{A.s}}{\text{V}}\ \equiv\ \frac{\text{amp.second}}{\text{volt}}\ \equiv\ \frac{\text{s}}{\Omega}\ \equiv\ \frac{\text{second}}{\text{ohm}}<br /> \end{eqnarray*}
Electric field (\boldsymbol{E}) = force/charge = voltage/distance (dim. ML/QT^2):
\frac{\text{N}}{\text{C}}\ \equiv\ \frac{\text{Newton}}{\text{coulomb}} \equiv\ \frac{\text{V}}{\text{m}}\ \equiv\ \frac{\text{volt}}{\text{metre}}
Electric displacement field (\boldsymbol{D}) and polarisation density (\boldsymbol{P}) = charge/area (dim. Q/L^2):
\frac{\text{C}}{\text{m}^2}\ \equiv\ \frac{\text{coulomb}}{\text{metre}^2}
Magnetic field (\boldsymbol{B}) = force/charge.speed = magnetic flux/area = voltage.time/area = force/current.distance = mass/charge.time = mass/current.time-squared = energy.time/charge.area (dim. M/QT):
\begin{eqnarray*}<br /> \text{T} & \equiv & \text{tesla}\ \equiv\ \frac{\text{Wb}}{\text{m}^2}\ \equiv\ \frac{\text{weber}}{\text{metre}^2}\ \equiv\ \frac{\text{V.s}}{\text{m}^2}\ \equiv\ \frac{\text{volt.second}}{\text{metre}^2}\\<br /> & \equiv & \frac{\text{N}}{\text{A.m}}\ \equiv\ \frac{\text{Newton}}{\text{amp.metre}}\ \equiv\ \frac{\text{kg}}{\text{C.s}}\ \equiv\ \frac{\text{kilogram}}{\text{coulomb.second}}\ \equiv\ \frac{\text{kg}}{\text{A.s}^2}\ \equiv\ \frac{\text{kilogram}}{\text{amp.second}^{\,2}}<br /> \end{eqnarray*}
Time (dim. T):
\text{s}\ \equiv\ \text{second}\ \equiv\ \frac{\text{H}}{\Omega}\ \equiv\ \frac{\text{henry}}{\text{ohm}}\ \equiv\ \Omega\text{.F}\ \equiv\ \text{ohm.farad}\ \equiv\ \text{H}^{1/2}\text{.F}^{1/2}\ \equiv\ \text{henry}^{1/2}\text{.farad}^{1/2}
Extended explanation
Two ways of defining voltage:
voltage = energy/charge = work/charge = force"dot"distance/charge = (from the Lorentz force) electric field"dot"distance, or dV = E.dr
but also voltage = energy/charge = (energy/time)/(charge/time) = power/current, or V = W/I
Velocity:
Note that, dimensionally, the relationship between the electric and magnetic fields \mathbf{E} and \mathbf{B} is the inverse of the analogous relationship between \mathbf{D} and \mathbf{H} or between \mathbf{P} and \mathbf{M}:
\text{velocity}\ =\ \frac{\text{electric field (E)}}{magnetic\text{ field (B)}}\ =\ \frac{magnetic\text{ intensity (H)}}{\text{electric displacement field (D)}}\ =\ \frac{magnetic\text{ density (M)}}{\text{polarisation density (P)}}
and so, for example, we expect to find (1/c)\mathbf{E} and \mathbf{B} together, but c\mathbf{D} and \mathbf{H} together, and c\mathbf{P} and \mathbf{M} together.
Time constants:
In "RLC" AC circuits (with resistance R, inductance L and/or capacitance C), combinations with dimensions of time, such as RC, or L/R, occur as "time constants", and combinations with dimensions of 1/time, such as \sqrt{(1/LC - R^2/4L^2)}, occur as frequencies.
Electric displacement field:
The electric displacement field was designed specifically for parallel-plate capacitors: it is always Q/A, the charge (on either plate) divided by the area, in coulombs per square metre (C/m^2).
Permittivity and permeability:
Permittivity (a tensor) = capacitance/distance = electric displacement field/electric field (dim. Q^2T^2/ML^3):
\frac{\text{F}}{\text{m}}\ =\ \frac{\text{farad}}{\text{metre}}
\mathbf{D}\ =\ \widetilde{\mathbf{\varepsilon}}\mathbf{E}\ =\ \varepsilon_0\,\mathbf{E}\ +\ \mathbf{P}\ \,\text{(or }\mathbf{E}\ =\ \mu_0\,c^2\,(\mathbf{D}\ -\ \mathbf{P})\ \text{)}
Permeability (a tensor) = inductance/distance = magnetic field/auxiliary magnetic field (dim. ML/Q^2):
\frac{\text{H}}{\text{m}}\ =\ \frac{\text{henry}}{\text{metre}}\ =\ \frac{\text{T.m}}{\text{A}}\ =\ \frac{\text{tesla.metre}}{\text{amp}}\ =\ \frac{\text{N}}{\text{A}^2}\ =\ \frac{\text{Newton}}{\text{amp}^2}
\mathbf{H} = \widetilde{\mathbf{\mu}}^{-1}\mathbf{B}\ =\ \frac{1}{\mu_0}\,\mathbf{B}\ \,-\ \,\mathbf{M}\ \,\text{(or }\mathbf{B}\ =\ \mu_0(\mathbf{H}\ +\ \mathbf{M})\ \text{)}
Note that, since the magnetic analogies of {\mathbf{E}} and {\mathbf{D}} are {\mathbf{B}} and {\mathbf{H}}, respectively, the magnetic analogy of permittivity is the inverse of permeability, and the magnetic analogy of \mathbf{P} is minus \mathbf{M}.
This is purely for historical reasons.
Permeability times permittivity = 1/velocity-squared (dim. T^2/L^2):
\widetilde{\mathbf{\varepsilon}}\widetilde{\mathbf{\mu}}\ =\ \frac{1}{v^2}
Vacuum constants:
Vacuum permeability is defined as exactly:
\mu_0\ \equiv\ 4\pi\,10^{-7}\ \text{H/m}
which is approximately: 1.26\,10^{-6}\ \text{H/m}
Vacuum permittivity is defined as exactly:
\varepsilon_0\ \equiv\ \frac{1}{\mu_0\,c^2}
which is approximately: 8.85 \, 10^{-12}\ \text{F/m}
Characteristic impedance of vacuum (Z_0=\mu_0c) is defined as exactly:
Z_0\ =\ 119.9169832\pi\ \Omega
which is approximately: 376.73\ \Omega
cgs units:
The following are cgs units, and more details may be found at http://en.wikipedia.org/wiki/CGS and http://www.qsl.net/g4cnn/units/units.htm:
esu (charge)
biot (current)
statvolt (electric potential)
maxwell (magnetic flux)
oersted (magnetic intensity, \mathbf{H})
gauss (magnetic field, \mathbf{B})
* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
Electric and magnetic units have symbols which are (or begin with) a capital letter, but have names which begin with a small letter.
The units below (except for eV) are SI units.
dim. = dimension; M = mass; L = length; T = time; Q = charge.
Units such as A.s^{-1} have been written as fractions, to make easier comparison between different units, but this is generally bad practice, and is not to be copied.
Equations
Charge (dim. Q):
\text{C}\ \equiv\ \text{coulomb}
Current = charge/time = energy/magnetic flux (dim. Q/T):
\text{A}\ \equiv\ \text{amp (or ampere)}\ \equiv\ \frac{\text{C}}{\text{s}}\ \equiv\ \frac{\text{coulomb}}{\text{second}}\ \equiv\ \frac{\text{J}}{\text{Wb}}\ \equiv\ \frac{\text{joule}}{\text{weber}}
Magnetic flux = voltage.time = energy/current (dim. ML^2/QT):
\text{Wb}\ \equiv\ \text{weber}\ \equiv\ \text{V.s}\ \equiv\ \text{volt.second}\ \equiv\ \frac{\text{J.s}}{\text{C}}\ \equiv\ \frac{\text{joule.second}}{\text{coulomb}}
Magnetic pole-strength:
\text{A-m}\ \equiv\ \text{amp-metre}
Magnetic dipole moment = pole-strength.distance = current.area:
\text{A-m.m}\ \equiv\ \text{A.m}^2\ \equiv\ \text{amp-square metre}\ \equiv\ \frac{\text{J}}{\text{T}}\ \equiv\ \frac{\text{joule}}{\text{tesla}}
Magnetic intensity (\boldsymbol{H}) and magnetisation density (\boldsymbol{M}) = current/distance (dim. Q/LT):
\frac{\text{A}}{\text{m}}\ \equiv\ \frac{\text{amp-turns}}{\text{metre}}\ \equiv\ \frac{\text{amp}}{\text{metre}}\ \equiv\ \frac{\text{A-m.m}}{\text{m}^3}\ \equiv\ \frac{\text{magnetic dipole moment}}{\text{volume}}
Electric potential = voltage = energy/charge = emf (dim. ML^2/QT^2):
\text{V}\ \equiv\ \text{volt}\ \equiv\ \frac{\text{J}}{\text{C}}\ \equiv\ \frac{\text{joule}}{\text{coulomb}}\ \equiv\ \frac{\text{W.s}}{\text{C}}\ \equiv\ \frac{\text{watt.second}}{\text{coulomb}}\ \equiv\ \frac{\text{W}}{\text{A}}\ \equiv\ \frac{\text{watt}}{\text{amp}}
Power = voltage.current = energy/time (dim. ML^2/T^3):
\text{W}\ \equiv\ \text{watt}\ \equiv\ \frac{\text{J}}{\text{s}}\ \equiv\ \frac{\text{joule}}{\text{second}}\ \equiv\ \frac{\text{N.m}}{\text{s}}\ \equiv\ \frac{\text{Newton.metre}}{\text{second}}\ \equiv\ \text{V.A}\ \equiv\ \text{volt.amp}\ \equiv\ \Omega\text{.A}^2\ \equiv\ \text{ohm.amp}^2
Energy = voltage.charge (dim. ML^2/T^2):
\text{J}\ \equiv\ \text{joule}\ \equiv\ \text{CV}\ \equiv\ \text{coulomb.volt}\ \equiv\ \frac{\text{eV}}{1.602\ 10^{-19}}\ \equiv\ \frac{\text{electron.volt}}{1.602\ 10^{-19}}
Energy density = energy/volume = work done/volume = force/area = pressure (dim. M/LT^2):
\text{Pa}\ \equiv\ \text{pascal}\ \equiv\ \frac{\text{J}}{\text{m}^3}\ \equiv\ \frac{\text{joule}}{\text{metre}^3}\ \equiv\ \frac{\text{N}}{\text{m}^2}\ \equiv\ \frac{\text{N}}{\text{C}}\ \frac{\text{C}}{\text{m}^2}\ \equiv\ \frac{\text{N}}{\text{A.m}}\ \frac{\text{A}}{\text{m}}\ \equiv\ \frac{\text{Newton}}{\text{metre}^2}
Impedance (Z\ =\ R\ +\ jX) (resistance plus jreactance) = voltage/current = electric field per magnetic intensity (\boldsymbol{E}/\boldsymbol{H}) = power/current-squared = inductance/time = inductance.frequency (dim. ML^2/Q^2T):
\Omega\ \equiv\ \text{ohm}\ \equiv\ \frac{\text{V}}{\text{A}}\ \equiv\ \frac{\text{volt}}{\text{amp}}\ \equiv\ \frac{\text{W}}{\text {A}^2}\ \equiv\ \frac{\text{watt}}{\text{amp}^2}\ \equiv\ \frac{\text{H}}{\text {s}}\ \equiv\ \frac{\text{henry}}{\text{second}}
Conductance = current/voltage = capacitance/time = capacitance.frequency (dim. Q^2T/ML^2):
S\text{ or }\mho\ \equiv\ \text{siemens}\ \equiv\ \frac{\text{A}}{\text{V}}\ \equiv\ \frac{\text{amp}}{\text{volt}}\ \equiv\ \frac{\text{F}}{\text {s}}\ \equiv\ \frac{\text{farad}}{\text{second}}
Inductance = magnetic flux/current = voltage.time/current = energy.time-squared/charge-squared (dim. ML^2/Q^2):
<br /> \begin{eqnarray*}<br /> \text{H} & \equiv & \text{henry}\ \equiv\ \frac{\text{Wb}}{\text{A}}\ \equiv\ \frac{\text{weber}}{\text{amp}}\ \equiv\ \frac{\text{V.s}}{\text{A}}\ \equiv\ \frac{\text{volt.second}}{\text{amp}}\ \equiv\ \Omega\text{.s}\ \equiv\ \text{ohm.second}\\<br /> & \equiv & \frac{\text{J.s}^2}{\text{C}^2}\ \equiv\ \frac{\text{joule.second}^{\,2}}{\text{coulomb}^{\,2}}\ \equiv\ \frac{\text{s}^2}{\text{F}}\ \equiv\ \frac{\text{second}^{\,2}}{\text{farad}}<br /> \end{eqnarray*}
Capacitance = charge/voltage = current.time/voltage = charge-squared/energy (dim. Q^2T^2/ML^2):
<br /> \begin{eqnarray*}<br /> \text{F} & \equiv & \text{farad}\ \equiv\ \frac{\text{C}}{\text{V}}\ \equiv\ \frac{\text{coulomb}}{\text{volt}}\ \equiv\ \frac{\text{C}^2}{\text{J}}\ \equiv\ \frac{\text{coulomb}^{\,2}}{\text{joule}}\ \equiv\ \frac{\text{C}^{\,2}}{\text{N.m}}\ \equiv\ \frac{\text{coulomb}^2}{\text{Newton.metre}}\\<br /> & \equiv & \frac{\text{A.s}}{\text{V}}\ \equiv\ \frac{\text{amp.second}}{\text{volt}}\ \equiv\ \frac{\text{s}}{\Omega}\ \equiv\ \frac{\text{second}}{\text{ohm}}<br /> \end{eqnarray*}
Electric field (\boldsymbol{E}) = force/charge = voltage/distance (dim. ML/QT^2):
\frac{\text{N}}{\text{C}}\ \equiv\ \frac{\text{Newton}}{\text{coulomb}} \equiv\ \frac{\text{V}}{\text{m}}\ \equiv\ \frac{\text{volt}}{\text{metre}}
Electric displacement field (\boldsymbol{D}) and polarisation density (\boldsymbol{P}) = charge/area (dim. Q/L^2):
\frac{\text{C}}{\text{m}^2}\ \equiv\ \frac{\text{coulomb}}{\text{metre}^2}
Magnetic field (\boldsymbol{B}) = force/charge.speed = magnetic flux/area = voltage.time/area = force/current.distance = mass/charge.time = mass/current.time-squared = energy.time/charge.area (dim. M/QT):
\begin{eqnarray*}<br /> \text{T} & \equiv & \text{tesla}\ \equiv\ \frac{\text{Wb}}{\text{m}^2}\ \equiv\ \frac{\text{weber}}{\text{metre}^2}\ \equiv\ \frac{\text{V.s}}{\text{m}^2}\ \equiv\ \frac{\text{volt.second}}{\text{metre}^2}\\<br /> & \equiv & \frac{\text{N}}{\text{A.m}}\ \equiv\ \frac{\text{Newton}}{\text{amp.metre}}\ \equiv\ \frac{\text{kg}}{\text{C.s}}\ \equiv\ \frac{\text{kilogram}}{\text{coulomb.second}}\ \equiv\ \frac{\text{kg}}{\text{A.s}^2}\ \equiv\ \frac{\text{kilogram}}{\text{amp.second}^{\,2}}<br /> \end{eqnarray*}
Time (dim. T):
\text{s}\ \equiv\ \text{second}\ \equiv\ \frac{\text{H}}{\Omega}\ \equiv\ \frac{\text{henry}}{\text{ohm}}\ \equiv\ \Omega\text{.F}\ \equiv\ \text{ohm.farad}\ \equiv\ \text{H}^{1/2}\text{.F}^{1/2}\ \equiv\ \text{henry}^{1/2}\text{.farad}^{1/2}
Extended explanation
Two ways of defining voltage:
voltage = energy/charge = work/charge = force"dot"distance/charge = (from the Lorentz force) electric field"dot"distance, or dV = E.dr
but also voltage = energy/charge = (energy/time)/(charge/time) = power/current, or V = W/I
Velocity:
Note that, dimensionally, the relationship between the electric and magnetic fields \mathbf{E} and \mathbf{B} is the inverse of the analogous relationship between \mathbf{D} and \mathbf{H} or between \mathbf{P} and \mathbf{M}:
\text{velocity}\ =\ \frac{\text{electric field (E)}}{magnetic\text{ field (B)}}\ =\ \frac{magnetic\text{ intensity (H)}}{\text{electric displacement field (D)}}\ =\ \frac{magnetic\text{ density (M)}}{\text{polarisation density (P)}}
and so, for example, we expect to find (1/c)\mathbf{E} and \mathbf{B} together, but c\mathbf{D} and \mathbf{H} together, and c\mathbf{P} and \mathbf{M} together.
Time constants:
In "RLC" AC circuits (with resistance R, inductance L and/or capacitance C), combinations with dimensions of time, such as RC, or L/R, occur as "time constants", and combinations with dimensions of 1/time, such as \sqrt{(1/LC - R^2/4L^2)}, occur as frequencies.
Electric displacement field:
The electric displacement field was designed specifically for parallel-plate capacitors: it is always Q/A, the charge (on either plate) divided by the area, in coulombs per square metre (C/m^2).
Permittivity and permeability:
Permittivity (a tensor) = capacitance/distance = electric displacement field/electric field (dim. Q^2T^2/ML^3):
\frac{\text{F}}{\text{m}}\ =\ \frac{\text{farad}}{\text{metre}}
\mathbf{D}\ =\ \widetilde{\mathbf{\varepsilon}}\mathbf{E}\ =\ \varepsilon_0\,\mathbf{E}\ +\ \mathbf{P}\ \,\text{(or }\mathbf{E}\ =\ \mu_0\,c^2\,(\mathbf{D}\ -\ \mathbf{P})\ \text{)}
Permeability (a tensor) = inductance/distance = magnetic field/auxiliary magnetic field (dim. ML/Q^2):
\frac{\text{H}}{\text{m}}\ =\ \frac{\text{henry}}{\text{metre}}\ =\ \frac{\text{T.m}}{\text{A}}\ =\ \frac{\text{tesla.metre}}{\text{amp}}\ =\ \frac{\text{N}}{\text{A}^2}\ =\ \frac{\text{Newton}}{\text{amp}^2}
\mathbf{H} = \widetilde{\mathbf{\mu}}^{-1}\mathbf{B}\ =\ \frac{1}{\mu_0}\,\mathbf{B}\ \,-\ \,\mathbf{M}\ \,\text{(or }\mathbf{B}\ =\ \mu_0(\mathbf{H}\ +\ \mathbf{M})\ \text{)}
Note that, since the magnetic analogies of {\mathbf{E}} and {\mathbf{D}} are {\mathbf{B}} and {\mathbf{H}}, respectively, the magnetic analogy of permittivity is the inverse of permeability, and the magnetic analogy of \mathbf{P} is minus \mathbf{M}.
This is purely for historical reasons.
Permeability times permittivity = 1/velocity-squared (dim. T^2/L^2):
\widetilde{\mathbf{\varepsilon}}\widetilde{\mathbf{\mu}}\ =\ \frac{1}{v^2}
Vacuum constants:
Vacuum permeability is defined as exactly:
\mu_0\ \equiv\ 4\pi\,10^{-7}\ \text{H/m}
which is approximately: 1.26\,10^{-6}\ \text{H/m}
Vacuum permittivity is defined as exactly:
\varepsilon_0\ \equiv\ \frac{1}{\mu_0\,c^2}
which is approximately: 8.85 \, 10^{-12}\ \text{F/m}
(If it wasn't for that arbitrary 10^{-7} in the definition of \mu_0, then \varepsilon_0 would simply be 1/4\pi c^2 F/m)
Characteristic impedance of vacuum (Z_0=\mu_0c) is defined as exactly:
Z_0\ =\ 119.9169832\pi\ \Omega
which is approximately: 376.73\ \Omega
cgs units:
The following are cgs units, and more details may be found at http://en.wikipedia.org/wiki/CGS and http://www.qsl.net/g4cnn/units/units.htm:
esu (charge)
biot (current)
statvolt (electric potential)
maxwell (magnetic flux)
oersted (magnetic intensity, \mathbf{H})
gauss (magnetic field, \mathbf{B})
* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!