Electric Dipole Potential: Direction of Electric Field at Theta=0,45,90,135,180

  • Thread starter Thread starter captainjack2000
  • Start date Start date
  • Tags Tags
    Dipoles Electric
captainjack2000
Messages
96
Reaction score
0

Homework Statement


The potential due to an electric dipole is V(r)=pcos(theta)/(4*PI*epsilon*r^2)
Determine the direction of the electric field E at theta = 0 , 45, 90, 135 and 180 degrees?


Homework Equations


The field of an electric dipole is given by Er = 2pcos(theta)/(4*PI*epsilon*r^3)
and E(theta) = psin(theta)/(4*PI*epsilon*r^3)


The Attempt at a Solution


I am a bit confused when look at the solutions to this question. For theta = 45 degrees is says that

" Er = 2*E(theta) = sqrt(2)*p/(4*PI*epsilon*r^3) or alternatively
Ez=p/(8*PI*epsilon*r^3) and E(x/y) = 3p/(8*PI*epsilon*r^3)
so E = sqrt(5/2)*p/(4*PI*epsilon*r^3)
at an angle to the dipole axis of alpha=72 degrees where tan(alpha)=3 "

I am unsure why Er = 2*E(theta) and how that arrived at the direction of the dipole (especially how they determined it to be at an angle of 72 degrees?? )

Thanks
 
Physics news on Phys.org
captainjack2000 said:
I am unsure why Er = 2*E(theta)
Compare the formulas for Er and Eθ for θ = 45 degrees. Realize that sin(45) = cos(45).
and how that arrived at the direction of the dipole (especially how they determined it to be at an angle of 72 degrees?? )
The are asking for the direction of the field with respect to the dipole direction, not the direction of the dipole.

Given that Er = 2Eθ, first figure out (using a little trig) the angle the field makes with the radial direction (where θ = 45). The figure out its angle with respect to the dipole axis (which is where θ = 0).
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top