Electric field given a time-dependent magnetic field

AI Thread Summary
To find the induced electric field from a time-dependent magnetic field, it is essential to apply Helmholtz's theorem correctly, which requires appropriate boundary conditions. The example discussed involves a magnetic field B = b*tz, leading to an electric field E that lies in the xy plane. However, the solution for E is not unique due to the lack of specified boundary conditions, allowing for multiple valid configurations. The realization that the field must satisfy certain conditions highlights the importance of understanding the underlying principles of vector fields. Ultimately, further exploration of the Helmholtz theorem and its implications is necessary for accurate calculations.
Privatecroat
Messages
2
Reaction score
0
I suppose that my main question is how to find the induced electric field given a time-dependent magnetic field, but i will demonstrate my question with an example:

I constructed a simple magnetic field B = b*tz , permeating the whole space. The induced electric field will lie in the xy plane (assuming there are no static charges present).
Now, from what I understood Helmholtz theorem says that, given divergence (0 in this case) and rotation of a vector field (-b for the electric field in this case) that field is uniquely determined.

Then I constructed such a field (E = ½b*yx - ½b*xy). However, then I noticed that any field of shape
E = ½b(y+A)x - ½b(x+B)y will also satisfy the conditions (I.E. the centre of the circular field lines will be shifted). Furthemore, why would any point on the xy plane be privileged as the centre of the field lines circulating around it?

Now , I could say that the whole space is infact in an infinitely big solenoid, whose axis coincides with the z-axis, and then the electric field lines should circulate around the origin of the xy plane (and all planes parallel to it). In that case, why does my math not check out?

Maybe I am missing something obvious, but in any case any help would be appreciated.

EDIT: bolded x,y,z are direction vectors only.
 
Last edited:
Physics news on Phys.org
Privatecroat said:
I constructed a simple magnetic field B = b*tz , ... Helmholtz theorem
How fast does the field need to fall off to satisfy the Helmholtz theorem?
 
  • Like
Likes Privatecroat
Ouch, so I seem to have missed the fact that I need some boundary conditions, which would indeed "center" my solution onto the z-axis. It seems like I just took a look at the differential equations and thought to myself "Oh golly, I will just use that fancy thing I read about in my textbook." Alas, no free lunches indeed.

EDIT: Seems I used the theorem on a field that did not satisfy the conditions. I will need to read further into the theorem and its implications, but thanks for pointing out the error of my ways.
 
Last edited:
No problem!

By the way, it isn't wrong to use that equation as an approximation for some region wherethe field is approximately linear as described. But because you are looking at that small section one of the consequences is that the E field is not unique. You then would need to look further away, to your boundary or symmetry conditions to fully solve for the E field.
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
Back
Top