Electric field within solenoid

In summary, the current carrying solenoid will have no radial electric field inside it, even for a time-varying current.
  • #1
blintaro
37
1
Hello all,

I can't figure out why it is impossible to have a radial electrical field within a solenoid. My gut tells me there would be one. For that matter, I also don't understand why there is no radial component surrounding a current carrying wire. Considering gauss' law has not helped me so far since I can't restrict the radial and longitudinal components of flux. I also tried to consider faraday's law by reasoning that the product (b field) of the curl must be along the axis (z direction) in cylindrical coordinates but that just created more conditions on the components of E.

If anyone can help it would be really appreciated, I might be a little butthurt since I spent the majority of my exam time puzzling over this an consequently ran out of time. Whoops!
 
Physics news on Phys.org
  • #2
Does a current carrying wire have a net charge? Is the magnetic field changing in time?
 
  • #3
The Maxwell's equations for the electric field ## E ## need to be considered. One is ## \nabla \cdot E=\rho/\epsilon_o ##. With Gauss's law, this becomes in integral form ## \int E \cdot dA=Q/\epsilon_o ##. The current carrying solenoid has radial symmetry and the enclosed ## Q ## is zero. This equation tells us there will be no radial electric field ## E ## inside a solenoid, even for a time-varying current. The other Maxwell equation involving ## E ## is ## \nabla \times E=-dB/dt ## which in integral form using Stokes theorem becomes ## \oint E \cdot dl=-d(BA)/dt ## where ## BA ## is the magnetic flux across the area of the path of the line integral . For the steady state case, this gives ## E=0 ## for the ## \phi ## component, but for a time varying solenoid current, the changing ## B_z ## will result in a ## \phi ## component of ## E ## which is a Faraday EMF inside the solenoid (as well as outside of the solenoid). Perhaps this helps to answer your question. Meanwhile there are no electrical charges to generate any static ## E_z ##. Even for a time-varying current, I believe ## E_z=0 ##, but this last one is a minor detail that can be worked out by considering another of Maxwell's equations ## \nabla \times B=\mu_o J +\mu_o \epsilon_o dE/dt ##.
 
  • Like
Likes Delta2
  • #4
That's a good question! Since the definition of current is time varying charge I don't see why it can't be modeled as a line of moving charge. Which can be integrated along a line at given moment of time to give some amount of net charge.

In this case the magnetic field in the solenoid was varying because the current around the solenoid was dependent on time.
 
  • #5
Ah I see! The enclosed charge must be zero! What about when the Gaussian surface encloses a line of current, then there might be enclosed charge right?
 
  • Like
Likes Delta2
  • #6
blintaro said:
Ah I see! The enclosed charge must be zero! What about when the Gaussian surface encloses a line of current, then there might be enclosed charge right?
Normally a line of current in a conductor is still electrically neutral. The net charge contained in any portion of the conductor is considered to be zero. In some very advanced treatments of the subject, there may be some non-neutral cases considered, e.g. the Hall effect, but for most elementary cases, the current carrying conductor is assumed to be electrically neutral.
 
  • #7
I think that makes sense in terms of an ionic fluid or free electrons in a metal... So does that mean if a wire connected a charged sphere to an uncharged sphere, say, then there would be quantitatively different behavior?
 
  • #8
There will be radial component inside the solenoid , though very small, and that is due to imperfection in the symmetry (a solenoid is a helix, a not a series of perfect cyclic currents closely spaced together as we theoretically view it).

There will also be radial component in the case of a straight wire carrying current, and that is because - though the conductor will have zero net charge as a whole- of the local surface charges that are present. But these surface charge densities are small also so the radial component will be very small, practically zero.
 
  • Like
Likes blintaro

What is an electric field?

An electric field is a physical field that surrounds an electrically charged particle or object. It is the force per unit charge that would be experienced by a test charge placed at that point in the field.

What is a solenoid?

A solenoid is a type of electromagnet that is made by wrapping a coil of wire around a cylindrical core. It produces a relatively uniform magnetic field inside the coil when an electric current is passed through it.

How is the electric field within a solenoid calculated?

The electric field within a solenoid can be calculated using the equation E = -N d(phi)/dt, where E is the electric field, N is the number of turns in the solenoid, and d(phi)/dt is the rate of change of the magnetic flux through the solenoid.

Is the electric field within a solenoid constant?

No, the electric field within a solenoid is not constant. It varies along the length of the solenoid, and its magnitude also depends on the current flowing through the solenoid and the number of turns in the coil.

What is the direction of the electric field within a solenoid?

The electric field within a solenoid is directed parallel to the axis of the solenoid, from the positive end to the negative end. This direction can be determined using the right-hand rule, where the fingers point in the direction of the current and the thumb points in the direction of the electric field.

Similar threads

  • Electromagnetism
Replies
5
Views
2K
  • Electromagnetism
Replies
14
Views
1K
Replies
14
Views
1K
Replies
8
Views
1K
  • Electromagnetism
Replies
4
Views
949
Replies
4
Views
1K
  • Electromagnetism
Replies
3
Views
751
  • Electromagnetism
2
Replies
40
Views
2K
Back
Top