Elegant Notation: Intersection of Inequalities

  • Thread starter Thread starter bomba923
  • Start date Start date
  • Tags Tags
    Notation
AI Thread Summary
The notation for denoting the solution set of inequalities using the gathered format is questioned for its general acceptance. A clearer expression is proposed, emphasizing the need for intersection symbols to accurately represent a union of solution sets. The discussion highlights the ambiguity in simply listing inequalities without clear logical connectors, suggesting the use of "and" or "or" to clarify the conditions. The final proposed notation is deemed correct, providing a more elegant and understandable representation of the solution set. The conversation underscores the importance of precise mathematical notation in conveying complex ideas effectively.
bomba923
Messages
759
Reaction score
0
Is the notation
\left\{ \begin{gathered}<br /> {\text{inequality}} \hfill \\<br /> {\text{inequality}} \hfill \\<br /> {\text{inequality}} \hfill \\ <br /> \end{gathered} \right\}
generally accepted to denote the solution set (i.e., intersection) of the inequalities?

If so, then the following (part of a problem I came up with) should be easy to understand:
\bigcup\limits_{\begin{subarray}{l} <br /> \left( {i,j,k} \right) \in \mathbb{N}^3 , \\ <br /> i &lt; j &lt; k \leqslant n <br /> \end{subarray}} {\left\{ \begin{gathered}<br /> \left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right\}}

Is there a simpler/more elegant way to express this, or is it fine the way it is?
 
Last edited:
Mathematics news on Phys.org
That looks like a set of inequalities rather than the solution set to me. Rather like saying that {x2- 4= 0} denotes the set {2, -2}. (The second way is more "elegant"!)
 
HallsofIvy said:
That looks like a set of inequalities rather than the solution set to me. Rather like saying that {x2- 4= 0} denotes the set {2, -2}. (The second way is more "elegant"!)
Well, to be more clear, perhaps I should add intersection symbols:
<br /> \bigcup\limits_{\begin{subarray}{l} <br /> \left( {i,j,k} \right) \in \mathbb{N}^3 , \\ <br /> i &lt; j &lt; k \leqslant n <br /> \end{subarray}} {\left( \begin{gathered}<br /> \left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \cap \hfill \\<br /> \left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \cap \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right)}
Essentially, I wish to denote a union of solution sets :shy:
Would that be clear/understood from the way I rewrote it here?
 
Last edited:
It looks like you are still thinking of an inequality as the set of things that satisfy it, this isn't the usual use of the notation. The set of x's that satisfy x>2 would be written:

{x| x>2}

(specifiy some set x is coming from if it's not clear from the context, like x a real number, or integer), not

x>2
 
Thanks shmoe :smile:
In that case, this would be the more correct way to denote my union of solution sets:
\bigcup\limits_{\begin{subarray}{l} <br /> \left( {i,j,k} \right) \in \mathbb{N}^3 , \\ <br /> i &lt; j &lt; k \leqslant n <br /> \end{subarray}} {\left\{ {\left( {x,y} \right)\left| \begin{gathered}<br /> \left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right.} \right\}}
Right?
 
Last edited:
Sure, I'd call that more correct, but you'd probably want to put some "or"'s in there.
edit-spelling, I wasn't calling you "Sue"
 
Last edited:
shmoe said:
Sue, I'd call that more correct, but you'd probably want to put some "or"'s in there.
Some "or's" ? Why so?
 
maybe "and"'s then. You just have a list of inequalities as conditions,

{x|x>2, x>4, x=65}

What does this mean? It's ambiguous as it's written.
 
shmoe said:
maybe "and"'s then. You just have a list of inequalities as conditions,

{x|x>2, x>4, x=65}

What does this mean? It's ambiguous as it's written.
Do you mean like this:
\bigcup\limits_{\begin{subarray}{l} <br /> \left( {i,j,k} \right) \in \mathbb{N}^3 , \\ <br /> i &lt; j &lt; k \leqslant n <br /> \end{subarray}} {\left\{ {\left( {x,y} \right)\left| \begin{gathered}<br /> \left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } &amp; {y_i - y_j } \\<br /> {x_i - x_k } &amp; {y_i - y_k } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } &amp; {y_j - y_i } \\<br /> {x_j - x_k } &amp; {y_j - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right.} \right\}}
Correct?
 
  • #10
Yes, post #9 is correct.
 

Similar threads

Replies
9
Views
2K
Replies
3
Views
3K
Replies
12
Views
2K
Replies
8
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Back
Top