bomba923
- 759
- 0
Is the notation
\left\{ \begin{gathered}<br /> {\text{inequality}} \hfill \\<br /> {\text{inequality}} \hfill \\<br /> {\text{inequality}} \hfill \\ <br /> \end{gathered} \right\}
generally accepted to denote the solution set (i.e., intersection) of the inequalities?
If so, then the following (part of a problem I came up with) should be easy to understand:
\bigcup\limits_{\begin{subarray}{l} <br /> \left( {i,j,k} \right) \in \mathbb{N}^3 , \\ <br /> i < j < k \leqslant n <br /> \end{subarray}} {\left\{ \begin{gathered}<br /> \left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } & {y_i - y_k } \\<br /> {x_i - x_j } & {y_i - y_j } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } & {y_i - y_k } \\<br /> {x_i - x_j } & {y_i - y_j } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } & {y_i - y_j } \\<br /> {x_i - x_k } & {y_i - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } & {y_i - y_j } \\<br /> {x_i - x_k } & {y_i - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } & {y_j - y_i } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } & {y_j - y_i } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right\}}
Is there a simpler/more elegant way to express this, or is it fine the way it is?
\left\{ \begin{gathered}<br /> {\text{inequality}} \hfill \\<br /> {\text{inequality}} \hfill \\<br /> {\text{inequality}} \hfill \\ <br /> \end{gathered} \right\}
generally accepted to denote the solution set (i.e., intersection) of the inequalities?
If so, then the following (part of a problem I came up with) should be easy to understand:
\bigcup\limits_{\begin{subarray}{l} <br /> \left( {i,j,k} \right) \in \mathbb{N}^3 , \\ <br /> i < j < k \leqslant n <br /> \end{subarray}} {\left\{ \begin{gathered}<br /> \left( {y - y_i } \right)\left( {x_i - x_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } & {y_i - y_k } \\<br /> {x_i - x_j } & {y_i - y_j } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_j } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_k } & {y_i - y_k } \\<br /> {x_i - x_j } & {y_i - y_j } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_i } \right)\left( {x_i - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } & {y_i - y_j } \\<br /> {x_i - x_k } & {y_i - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_i } \right)\left( {y_i - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_i - x_j } & {y_i - y_j } \\<br /> {x_i - x_k } & {y_i - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } & {y_j - y_i } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \geqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_i } & {y_j - y_i } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right\}}
Is there a simpler/more elegant way to express this, or is it fine the way it is?
Last edited: