kau said:
In case of contraction, say, ##δω_{\mu\nu} x^{\nu} ∂^{\mu}Θ ##... Couldn't we write it as
##δω_{\mu \nu} x^{\mu} ∂^{ \nu}Θ## as well..
No, you can’t. \omega_{ \mu \nu } x^{ \nu } \partial^{ \mu } = - \omega_{ \mu \nu } x^{ \mu } \partial^{ \nu }
what is the rule in this case??
Use the fact that contracted (dummy) indices can be relabelled freely. So, you can write
\omega_{ \mu \nu } x^{ \mu } \ \partial^{ \nu } \phi = \omega_{ \rho \sigma } \ x^{ \rho } \ \partial^{ \sigma } \phi . \ \ \ (1)
Using the identity, A = ( A + A ) / 2, we can rewrite (1) as
\omega_{ \mu \nu } \ x^{ \mu } \ \partial^{ \nu } \phi = \frac{ 1 }{ 2 } \left( \omega_{ \mu \nu } \ x^{ \mu } \ \partial^{ \nu } \phi + \omega_{ \rho \sigma } \ x^{ \rho } \ \partial^{ \sigma } \phi \right) .
Now, letting \rho = \nu and \sigma = \mu, we get
\omega_{ \mu \nu } \ x^{ \mu } \ \partial^{ \nu } \phi = \frac{ 1 }{ 2 } \left( \omega_{ \mu \nu } \ x^{ \mu } \ \partial^{ \nu } \phi + \omega_{ \nu \mu } \ x^{ \nu } \ \partial^{ \mu } \phi \right) .
But \omega_{ \nu \mu } = - \omega_{ \mu \nu }. Thus
\omega_{ \mu \nu } \ x^{ \mu } \ \partial^{ \nu } \phi = \frac{ 1 }{ 2 } \omega_{ \mu \nu } \left( x^{ \mu } \partial^{ \nu } - x^{ \nu } \partial^{ \mu } \right) \phi . \ \ \ \ \ \ (2)
actually if I go by the 1st choice then I will get an equation ##[ψ_{/a},M^{\mu \nu}]= L^{\mu \nu} ψ_{a}(x) + (S^ { \mu \nu}{}_{L})^{~b}{}_{a} ψ_{b} (x)## (ref: qft by sredinicki eqn #34.6)
now if I go by the 2nd choice I would get ## L^{\nu \mu}## in place of ## L^{\mu \nu}## and I don't think it's right. So tell me the rule here.
You don’t need to mention any textbook for me. Instead, I think it is better to show you a step by step derivation of this equation. Under the Lorentz group, finite-component fields on space-time transform by finite-dimensional (matrix) representations
\bar{ \phi }_{ a } ( \bar{ x } ) = D_{ a }{}^{ b } \phi_{ b } ( x ) , \ \ \ \ \ \ \ (3)
where D is a representation matrix
D_{ a }{}^{ c }( \Lambda_{ 1 } ) \ D_{ c }{}^{ b }( \Lambda_{ 2 } ) = D_{ a }{}^{ b }( \Lambda_{ 1 } \Lambda_{ 2 } ) .
Infinitesimally, we may write
D_{ a }{}^{ b } = \delta_{ a }^{ b } - \frac{ i }{ 2 } \omega_{ \mu \nu } ( S^{ \mu \nu } )_{ a }{}^{ b } , \ \ \ \ \ \ \ (4)
where S^{ \mu \nu } are the appropriate spin matrices for the field \phi. They satisfy the Lorentz algebra.
However, since \phi_{ a }( x ) (for all a’s) is an operator-valued field, it also transforms by (infinite-dimensional) unitary representation,U( \Lambda ), of the Lorentz group.
\bar{ \phi }_{ a } ( \bar{ x } ) = U^{ - 1 } \ \phi_{ a } ( \bar{ x } ) \ U . \ \ \ \ \ (5)
In terms of the abstract Lorentz generators, M^{ \mu \nu }, and the infinitesimal parameters \omega_{ \mu \nu }, we may write the unitary operator as
U( \Lambda ) = 1 - \frac{ i }{ 2 } \omega_{ \mu \nu } \ M^{ \mu \nu } . \ \ \ \ \ (6)
From (3) and (5), we find the finite transformation rule for the field operator
\bar{ \phi }_{ a } ( \bar{ x } ) = U^{ - 1 } \ \phi_{ a } ( \bar{ x } ) \ U = D_{ a }{}^{ b } \ \phi_{ b } ( x ) . \ \ \ (7)
Using
x = \Lambda^{ - 1 } \ \bar{ x } ,
we rewrite (7) as
\bar{ \phi }_{ a } ( \bar{ x } ) = U^{ - 1 } \ \phi_{ a } ( \bar{ x } ) \ U = D_{ a }{}^{ b } \phi_{ b } ( \Lambda^{ - 1 } \ \bar{ x } ) .
Dropping the bars from the coordinates, we get
\bar{ \phi }_{ a } ( x ) = U^{ - 1 } \ \phi_{ a } ( x ) \ U = D_{ a }{}^{ b } \ \phi_{ b } ( \Lambda^{ - 1 } x ) . \ \ \ \ (8)
Now, we will try to find the infinitesimal version of (8). Using
( \Lambda^{ - 1 } )^{ \mu \nu } x_{ \nu } = x^{ \mu } - \omega^{ \mu \nu } \ x_{ \nu } ,
we expand \phi ( \Lambda^{ - 1 } x ) to first order as
\phi_{ b } ( \Lambda^{ - 1 } x ) = \phi_{ b } ( x ) - \omega^{ \mu \nu } \ x_{ \nu } \ \partial_{ \mu } \phi_{ b } ( x ) . \ \ \ \ \ (9)
Substituting the equations (4), (6) and (9) in equation (8) and keeping only first order terms, we find
\bar{ \phi }_{ a } ( x ) - \phi_{ a } ( x ) = \frac{ i }{ 2 } \omega_{ \mu \nu } \ [ M^{ \mu \nu } , \phi_{ a } ( x ) ] = - \omega^{ \mu \nu } \ x_{ \nu } \ \partial_{ \mu } \phi_{ a } - \frac{ i }{ 2 } \omega_{ \mu \nu } ( S^{ \mu \nu } )_{ a }{}^{ b } \phi_{ b } ( x ) . \ (10)
Using \omega^{ \mu \nu } = - \omega^{ \nu \mu } and
\omega^{ \nu \mu } \ x_{ \nu } \ \partial_{ \mu } = \omega_{ \nu \mu } \ x^{ \nu } \ \partial^{ \mu } = \omega_{ \mu \nu } \ x^{ \mu } \ \partial^{ \nu } ,
equation (10) becomes
\delta \phi_{ a } ( x ) = \frac{ i }{ 2 } \omega_{ \mu \nu } \ [ M^{ \mu \nu } , \phi_{ a } ( x ) ] = \omega_{ \mu \nu } \ x^{ \mu } \ \partial^{ \nu } \phi_{ a } - \frac{ i }{ 2 } \omega_{ \mu \nu } ( S^{ \mu \nu } )_{ a }{}^{ b } \phi_{ b } ( x ) .
Now, if we use (2) in the first term on the right-hand-side, we find
\delta \phi_{ a } ( x ) = \frac{ i }{ 2 } \omega_{ \mu \nu } \ [ M^{ \mu \nu } , \phi_{ a } ( x ) ] = \frac{ 1 }{ 2 } \omega_{ \mu \nu } \ ( x^{ \mu } \partial^{ \nu } - x^{ \nu } \partial^{ \mu } ) \phi_{ a } ( x ) - \frac{ i }{ 2 } \omega_{ \mu \nu } \ ( S^{ \mu \nu } )_{ a }{}^{ b } \phi_{ b } ( x ) .
So, the equation you are after follows from
[ i M^{ \mu \nu } , \phi_{ a } ( x ) ] = ( x^{ \mu } \partial^{ \nu } - x^{ \nu } \partial^{ \mu } ) \phi_{ a } ( x ) - i ( S^{ \mu \nu } )_{ a }{}^{ b } \phi_{ b } ( x ) .
another thing is## \lambda^{n}{}_{a} C_{n u }=C_{a u} or C_{u a}##?
Neither! The question does not make sense. \lambda^{ n }{}_{ a } C_{ n u } = C_{ a u } if and only if \lambda^{ n }{}_{ a } is equal to the Kronecker delta \delta^{ n }_{ a }.
and I can change the positions of the elements any where in a tensor equation,right?? i.e.
##\lambda^{n}{}_{a} C_{ n \nu } \ \text{is equivalent to writing}~ C_{ n \nu } \lambda^{n}{}_{a}##
thanks,
kau
Yes, for numerical tensors and matrix elements the order does not matter.
Sam