Endomorphism Ring: Proving f(R) = E

  • Thread starter Thread starter Pietjuh
  • Start date Start date
  • Tags Tags
    Ring
AI Thread Summary
The discussion focuses on proving that the endomorphism ring E, defined as { f in End(R+) | f(xr) = f(x)r for all x,r in R }, is isomorphic to the ring R. The approach involves using the left multiplication map L_r: R+ --> R+, which is an injective homomorphism from R to End(R+). The key challenge is demonstrating that E is a subring of End(R+) and that f(R) equals E. It is established that any function g in E can be expressed as g(x) = agx, indicating that E consists of left-multiplications. The conclusion is that since E meets the criteria for left-multiplications, it follows that f(R) = E, thus proving the isomorphism.
Pietjuh
Messages
75
Reaction score
0
I'm working on a problem about the endomorphism ring:
Let R be a ring. Show that R is isomorphic to E = { f in End(R+) | f(xr) = f(x)r for all x,r in R }

I'm trying to do it with the following theorem in our lecture notes:
Let R be a ring and R+ the additive group of R. Let for r in R, L_r: R+ --> R+ : x |--> rx be the left multiplication map. Then f: R --> End(R+): r |--> L_r is a injective homomorphism, and R is isomorphic to a subring of End(R+), which is f(R).

I had the following strategy in mind: If I can show that E is a subring of End(R+) and that f(R) = E, the statement is proved. I almost succeeded with it, but I had a small problem on the end proving the equality of f(R) and E.

To show that f(R) lies in E isn't that hard. Because L_r (xy) = rxy = L_r(x) y, so L_r satisfies the conditions. But I couldn't figure out how to show that E lies in f(R).

Could anyone help me with this?
 
Physics news on Phys.org
EDIT: I had written a lot but I see most of it was unnecessary. You want to show that R is isomoprhic to E, and there is a natural function f (the one given in your post) which you know to be injective and homomorphic, you just need to show that f(R) = E. f(R) is the sub-ring of left-multiplications, so you want to show that E is the sub-ring of left-multiplications. Any element g in E satisfies the property that for all x, r in R, we have:

g(xr) = g(x)r

from this we can deduce:

g(x) = g(1x) = g(1)x

Let g(1) = ag. Then we can say that E consists of all functions of the form:

g(x) = agx

where ag is in R. Clearly, each g is a left-multiplication, and since E consists of all such functions (i.e. since all left-multiplications g satisfy g in End(R+), g(xr) = g(x)r for all x, r in R), we deduce that E is indeed the sub-ring of left-multiplications, so f(R) = E.
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top