Energy change under point transformation

Click For Summary
The discussion focuses on the transformation of energy and generalized momenta under the coordinate transformation \( q = f(Q, t) \). It highlights the relationship between generalized momenta and the Lagrangian, emphasizing the importance of correctly applying partial derivatives while holding specific variables constant. A key point of contention is the mistake in equating partial derivatives, which leads to an incorrect expression for energy transformation. The correct transformation is identified as \( E' = E - p \partial q / \partial t \). Understanding the proper application of the triple product rule for partial derivatives is crucial for resolving the confusion.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
I will put it below.
Relevant Equations
.
How do the energy and generalized momenta change under the following coordinate
transformation $$q= f(Q,t)$$The generalized momenta: $$P = \partial L / \partial \dot Q = \partial L / \partial \dot q\times \partial \dot q / \partial \dot Q = p \partial \dot q / \partial \dot Q = p \partial q / \partial Q $$$$\dot Q = \partial Q / \partial q \times \dot q + \partial Q / \partial t$$$$E' = P\dot Q - L = p \partial q / \partial Q (\partial Q / \partial q \times \dot q + \partial Q / \partial t) - L = p\dot q + p \partial q / \partial t - L = E + p \partial q / \partial t$$But the answer is $$E' = E - p \partial q / \partial t$$What did i got wrong?
 
Physics news on Phys.org
When writing a partial derivative, it's important to keep in mind which variables are held constant. I often find it necessary to explicitly indicate the variable or variables that are held constant.

I think the mistake occurs where you essentially wrote $$\frac{\partial q}{\partial Q} \frac{\partial Q}{\partial t} = \frac{\partial q}{\partial t} $$

Convince yourself that the left side should be $$\frac{\partial q}{\partial Q}\bigg |_t \frac{\partial Q}{\partial t}\bigg|_q $$ You can simplify this using the triple product rule (also called the cyclic identity for partial derivatives).
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
546
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K