I Energy of an electron with Schrodinger's equation

cc94
Messages
19
Reaction score
2
Hello, I was trying to make a simple model of an electron tunneling through several potential barriers. The electron will flow through a conductor to a heterojunction of possibly semiconductor/oxide layers. I assume the electron is coming as a plane wave from the left with some energy E. We know that k = sqrt(E - V) for each layer, but my question is, how do you determine E and V? Is E the fermi level in the conductor? Is V half of the band gap, which is the distance something at the fermi level would have to tunnel to reach the conduction band of the semiconductor/insulator? This problem is likely more complicated than this, but I just need somewhere to start.
 
Physics news on Phys.org
That expression doesn't have to work in solids. There will be a k(E) relation (dispersion relation), but it doesn't have to be a square root function. It depends on details of your material.

E is simply the energy of your incoming electron.
 
  • Like
Likes bhobba
mfb said:
That expression doesn't have to work in solids. There will be a k(E) relation (dispersion relation), but it doesn't have to be a square root function. It depends on details of your material.

E is simply the energy of your incoming electron.

Thanks for the reply. For the energy of the incoming electron, is there a simple way to relate it to say the voltage on the circuit? I don't think applying 1 V on a circuit actually gives the electron 1 eV of energy, because the electron isn't freely accelerating in vacuum.
 
The absolute energy is meaningless, you need the energy relative to the potential only, and that will probably be less than 1 eV.
 
mfb said:
The absolute energy is meaningless, you need the energy relative to the potential only, and that will probably be less than 1 eV.

Ah I think I finally understand. So if I had a voltage drop of 1 V across the entire structure, the electron's energy is 1 V, because I can call the exit the zero of energy, so the electron is 1 V higher (i.e. the Fermi level of the entrance side is 1 eV higher than at the exit). The potential that the election sees will also slope downward towards the zero.
 
  • Like
Likes bhobba
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top