lost captain
- 71
- 3
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy.
So in the video it says:
Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles.
Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total configurations are there for the system as a whole?
Then it is said that the number of configurations will be x^n . But i don't understand this, shouldn't it be x(x-1)(x-2)....(x-(n-1))?
Can 2 molecules have exactly the same microstates? I mean sure they can have the same velocity but also be in the same position?
So in the video it says:
Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles.
Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total configurations are there for the system as a whole?
Then it is said that the number of configurations will be x^n . But i don't understand this, shouldn't it be x(x-1)(x-2)....(x-(n-1))?
Can 2 molecules have exactly the same microstates? I mean sure they can have the same velocity but also be in the same position?