Entropy: What Is Unavailable Energy & Real-Life Examples

  • Context: Undergrad 
  • Thread starter Thread starter Sundown444
  • Start date Start date
  • Tags Tags
    Entropy
Click For Summary

Discussion Overview

The discussion centers around the concept of entropy, specifically focusing on what is meant by "unavailable energy" and seeking real-life examples of energy that cannot be utilized to perform work. Participants explore theoretical and practical implications of entropy in thermodynamic systems and its relation to work and order.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants assert that entropy represents the amount of energy that is unavailable to do work, seeking clarification on this definition.
  • Examples of heat engines are frequently cited as systems where energy is not fully converted to work, but some participants request examples outside of heat engines.
  • There is a suggestion that thermodynamic systems other than heat engines may exist, but some participants argue that heat engines are the primary examples.
  • A participant proposes a thought experiment involving an inert gas in a box to illustrate how maximum entropy leads to a lack of detectable movement, contrasting it with scenarios where temperature differences create order and allow work to be done.
  • Another participant discusses the relationship between order and the effectiveness of a system in doing work, suggesting that more orderly systems can perform work more efficiently.
  • There is a discussion about maximum entropy and its implications for the future of the universe, with some participants exploring the idea of how high entropy relates to the ability of systems, including living beings, to act or think.

Areas of Agreement / Disagreement

Participants express a variety of views on the definition and implications of entropy, with no clear consensus on the examples of unavailable energy or the broader implications of entropy in different systems. Some participants agree on the role of heat engines, while others seek alternative examples, indicating a lack of agreement on the scope of thermodynamic systems.

Contextual Notes

Participants' definitions and interpretations of entropy vary, and there are unresolved questions regarding the relationship between entropy, energy, and the ability to perform work. The discussion includes speculative scenarios and thought experiments that highlight the complexity of the topic.

Sundown444
Messages
179
Reaction score
7
From what I have heard, entropy is the amount of energy that is unavailable to do work. What exactly does it mean by "unavailable energy", and can someone give some examples of energy being unavailable to do work in real life?
 
  • Like
Likes   Reactions: ProfuselyQuarky
Science news on Phys.org
You want an example of a thermodynamic system that does work yet is unrelated to a heat engine?

Perhaps you'll get it if you see the PV-diagram representation:
http://home.iitk.ac.in/~suller/lectures/lec27.htm
... then look for the PV diagram for anything you can name, and compare.
 
Simon Bridge said:
You want an example of a thermodynamic system that does work yet is unrelated to a heat engine?

Depends. Is there not much else that is a thermodynamic system?
 
A heat engine is a thermodynamic system that does work ... by definition.
So there is nothing else.

Perhaps you just need a concrete example of a heat engine?
A steam engine? A diesel motor? Stirling engine?

The heat in a gas can push a piston, but you notice that not all the heat is used up doing this?
 
Simon Bridge said:
A heat engine is a thermodynamic system that does work ... by definition.
So there is nothing else.

Perhaps you just need a concrete example of a heat engine?
A steam engine? A diesel motor? Stirling engine?

The heat in a gas can push a piston, but you notice that not all the heat is used up doing this?

So it is just engines and nothing else? I guess the link you provided above will be enough. Maybe I was thinking of something that does not use heat to do work.
 
One more thing about entropy; if I have this down right, if there was zero or minimal energy (or work) and all or maximum entropy in something, that something would not be able to even move, or affect something else, or think and act in the case of a living being? After all, entropy is how much energy is not able to be used for work, right?
 
Maximum entropy is one of the more reasonable ideas of how the Universe ends - heat death.
In gazzillions of years particles will be too spread out for any significant amount of interaction to be occurring.
All forms of life by any sane definition become impossible well before that happens.
 
  • #10
rootone said:
Maximum entropy is one of the more reasonable ideas of how the Universe ends - heat death.
In gazzillions of years particles will be too spread out for any significant amount of interaction to be occurring.
All forms of life by any sane definition become impossible well before that happens.

I didn't mean maximum entropy in that sense, I believe. I was talking about something having more entropy and less energy. I may have misspoke. Let me ask again; if something has much more entropy and much less energy, would it be very hard for something to affect something or even move, or in the case of a living being, act and think?
 
  • #11
Entropy is not a force which negates energy.
It is a measure of order/disorder within a system.
A more orderly system is more effective at doing work, because less randomness.
 
  • #12
rootone said:
Entropy is not a force which negates energy.
It is a measure of order/disorder within a system.
A more orderly system is more effective at doing work, because less randomness.

I don't think I said that, or meant to imply that. (bolded part)

So, a more orderly system would be more effective at moving and affecting other things through actions, living or non living? And with a less orderly system, not so much?
 
  • #13
Sundown444 said:
I don't think I said that, or meant to imply that. (bolded part)

So, a more orderly system would be more effective at moving and affecting other things through actions, living or non living? And with a less orderly system, not so much?
That's pretty much my take on it, but let's see what anybody else might say.
 
  • #14
Here is a thought experiment that more closely ties the ideas of entropy and work, and extends to the real world. Consider a box containing an inert gas at some pressure volume and temperature. Extending from the top bottom and sides of the box are thin sheets of paper that will be pushed if the gas moves. If the box is insulated so that all sides are at the same temperature, this closed system will reach equilibrium and there will be no movement detectable. The gas has reached a state of maximum entropy or randomness. The density of the gas is evenly distributed, with a slight pressure gradient top to bottom if we want to consider gravity. If one surface is made hotter or colder from outside the box, it expands or cools the gas at that surface, creating order (lower entropy): the gas density is different at that location. This creates an air flow that does work by moving the paper. With the temperature difference removed, the gas movements return the system to an evenly distributed density, returning to maximum entropy. The real world example of this is the outdoor winds we feel every day. Note that there is energy in the closed system, in the form of pressure and heat which at the atomic level is gas atoms whizzing around. But because it is so randomized and evenly distributed, it can't move the paper in a detectable way.

If you want to think in terms of living things, think of the delegates of a political party unable to decide on a leader because the candidates all have basically the same platform.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K