Epsilon-delta for a continuous function

Nusc
Messages
752
Reaction score
2
The function f is continuous at a E R.

Let f:D->R and D be a subset of R.
The function f is continuous at a E D if for every epsilon > 0 there exists a delta > 0 so that if |x-a|< delta and x E D then: |f(x)-f(a)|< epsilon.

Can someone check this for me?
 
Physics news on Phys.org
that looks like the definition of continuity, is that all you wanted to know?
 
Yes, that's right.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top