reinloch
- 5
- 0
Homework Statement
proof this limit:
\lim_{x\rightarrow 1^+}\frac{1}{(x-1)(x-2)}=-∞
Homework Equations
The Attempt at a Solution
So for every N < 0, I need to find a \delta > 0 such that
0 < x - 1 < \delta \Rightarrow \frac{1}{(x-1)(x-2)} < N
Assuming 0 < x - 1 < 1, I get -1 < x - 2 < 0, and -\frac{1}{x-2}>1.
Assuming 0 < x - 1 < -\frac{1}{N}, I get -(x-1) > \frac{1}{N}, -\frac{1}{x-1} < N, and \left(-\frac{1}{x-1}\right)\left(-\frac{1}{x-2}\right) < N\left(-\frac{1}{x-2}\right), but then I got stuck.