Equal sets and bijective correspondence

  • Thread starter Thread starter mizunoami
  • Start date Start date
  • Tags Tags
    Sets
mizunoami
Messages
7
Reaction score
0

Homework Statement



If [n] and [m] are equal, then they are bijective correspondent.

I define f \subset\{(n,m)\mid n \in [n], m\in [m]\}. Suppose [n]=[m]. Let(n,m_1),(n,m_2)\in f. Because [n]=[m], then m_1=m_2. So for all n \in [n], there exists a unique m\in [m] such that f(n)=m. So f is a function.

Next I want to prove f is surjective and injective. But I'm stuck. How can I make use of the supposition [n]=[m] to prove surjectivity and injectivity?

Thanks.
 
Physics news on Phys.org
Do you mean "equal" or "equivalent"? In order to be equal, sets A and B must be identical- they contain exactly the same elements. In order to be equivalent, they must have the same cardinality- contain exactly the same number of elements. In either case, there is an obvious bijection.
 
I mean equal - so both sets contain the same elements.

Yeah, there is obviously a bijection. But how can I show that using a rigorous mathematical proof?
 
The obvious way- show that f, from [m] to [n], defined by f(x)= x, is both "one-to-one" and "onto". And that should be easy- if f(a)= f(b), what must be true of a and b? Let c be a member of [n]. What member of [m] is mapped to c?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top