Equation of resistance from given graph

AI Thread Summary
The discussion revolves around deriving the equation for resistance from a given graph, leading to the expression R(T) = R(0)^(1 - T_○^2/T^2). Participants express confusion over the choice of R(0) and T_○, suggesting that these constants should not be introduced prematurely. It is recommended to reformulate the linear equation in a more general form, ln R = -k/T^2 + m, before identifying the constants. This approach aims to align the derived equation with the options provided in the reference material. Ultimately, clarity on the definitions of R(0) and T_○ is essential for matching the results with the correct answer.
Aurelius120
Messages
269
Reaction score
24
Homework Statement
Given the graph of ##lnR## vs ##T^{-2}##, predict the relationship between resistance and temperature
Relevant Equations
NA
1000016494.jpg

From the graph:
$$lnR(T)=\frac{-lnR(0)T^2_○}{T^2}+lnR(0)$$
I have assumed ##R(0)## to be the value of ##R## at ##1/T^2=0## and ##T_○## to be the value of ##T## at ##lnR(T)=0##
From this I get,
$$R(T)=e^{lnR(0)×\left(1-\frac{T_○^2}{T^2}\right)}$$
$$R(T)=R(0)^{\left(1-\frac{T_○^2}{T^2}\right)}$$
This does not match with any of the options.
I couldn't reduce it any of the options either.

Maybe my choice of ##R(0)## and the one in the options refer to different quantities. Even so I could not get to the right answer(given option-c in the book).

Please help
 
Physics news on Phys.org
Aurelius120 said:
I have assumed ##R(0)## to be the value of ##R## at ##1/T^2=0## and ##T_○## to be the value of ##T## at ##lnR(T)=0##
I would assume R0 is the value of R when T=T0.
 
It is unclear to me why you have included ##\ln R_0## in the linear term. There is no reason to.

I suggest you write the linear equation on a more agnostic form ##\ln R = -k/T^2 + m##, solve for ##R##, and only then try to identify ##R_0## and ##T_0##.
 
haruspex said:
I would assume R0 is the value of R when T=T0.
I would not assume anything. I would wait with introducing the constants ##R_0## and ##T_0## until I can introduce them to get the result on one of the given forms. As should be clear from the given forms, ##R_0## is the value of ##R## in particular limits depending on the option. (##T = 0## for a and b, ##T \to \infty## for c, and ##T = 1## for d)
 
Orodruin said:
It is unclear to me why you have included ##\ln R_0## in the linear term. There is no reason to.

I suggest you write the linear equation on a more agnostic form ##\ln R = -k/T^2 + m##, solve for ##R##, and only then try to identify ##R_0## and ##T_0##.
Done
$$ln(R(T))=\frac{-k}{T^2}+m$$
$$R(T)=e^{(-k/T^2+m)}=e^m×e^{-k/T^2}=R_○e^{-T_○^2/T^2}$$
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top