- #1
Lily@pie
- 109
- 0
[itex](X,\rho)[/itex] is a pseudometric space
Define:
x~y if and only if [itex]ρ(x,y)=0[/itex]
(It is shown that x~y is an equivalence relation)
Ques:
If [itex]X^{*}[/itex] is a set of equivalence classes under this relation, then [itex]\rho(x,y)[/itex] depends only on the equivalence classes of x and y and [itex]\rho[/itex] induces a metric on [itex]X^{*}[/itex].
Attempt:
I know that from the question,
[itex]X^{*}=[/itex] {[a]; [itex]a\in X[/itex]} where [itex][a]={x\in X;\rho(x,a)=0}[/itex]
But I don't know how to go about proving that [itex]\rho(x,y)[/itex] depends only on [x] and [y]. I know i need to prove that [itex]\rho(x,y)[/itex] only depends on the all the [itex]c\in X[/itex] such that [itex]\rho(c,x)=\rho(c,y)=0[/itex].
But I just don't know where to start...
Thanks
Define:
x~y if and only if [itex]ρ(x,y)=0[/itex]
(It is shown that x~y is an equivalence relation)
Ques:
If [itex]X^{*}[/itex] is a set of equivalence classes under this relation, then [itex]\rho(x,y)[/itex] depends only on the equivalence classes of x and y and [itex]\rho[/itex] induces a metric on [itex]X^{*}[/itex].
Attempt:
I know that from the question,
[itex]X^{*}=[/itex] {[a]; [itex]a\in X[/itex]} where [itex][a]={x\in X;\rho(x,a)=0}[/itex]
But I don't know how to go about proving that [itex]\rho(x,y)[/itex] depends only on [x] and [y]. I know i need to prove that [itex]\rho(x,y)[/itex] only depends on the all the [itex]c\in X[/itex] such that [itex]\rho(c,x)=\rho(c,y)=0[/itex].
But I just don't know where to start...
Thanks
Last edited: