Equivalence of Subgroups in a Group

tiger4
Messages
6
Reaction score
0

Homework Statement


Let H and K be subgroups of the group G. Let a,b \in G and define a relation on G by a ~ b if and only if a = hbk for some h \in H and k \in K. Prove that this is an equivalence relation.

Homework Equations


a = hbk

The Attempt at a Solution


The goal is to prove the reflexive, symmetric, and transitive properties of equivalence. I was just hoping someone could help lead me in the right direction of how to start each one. Thanks!
 
Physics news on Phys.org
Reflexive means a~a. Can you find an element in H and another in K such that a=h.a.k?
Symmetric means a~b => b~a. So if a=h.b.k, you need to show b=h'.a.k' for some h' in H and k' in K.
Just use the definitions...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top