3.141592654
- 85
- 0
Homework Statement
Find the error estimation for the integral \int(1+x^2)^\frac{1}{4} with limits [0, 2] for n=8.
Homework Equations
\epsilon\leq \frac{|f^{(4)}_{max}(x)|(b-a)^5}{180n^4}
The Attempt at a Solution
The tricky part about this problem is finding f^{(4)}_{max}(x):
f(x)=(1+x^2)^\frac{1}{4}
f'(x)=\frac{1}{4}(1+x^2)^\frac{-3}{4}*2x <br /> <br /> =\frac{1}{2}x(1+x^2)^\frac{-3}{4}
f''(x)=(\frac{1}{2}x*\frac{-3}{4}(1+x^2)^\frac{-7}{4}*2x)+((1+x^2)^\frac{-3}{4}*\frac{1}{2})
=\frac{1}{2} [\frac{-6}{4}x^2(1+x^2)^\frac{-7}{4}+(1+x^2)^\frac{-3}{4}]
=\frac{1}{2} [\frac{-3}{2}x^2(1+x^2)^\frac{-7}{4}+(1+x^2)^\frac{-3}{4}]
f'''(x)=\frac{1}{2} [(\frac{-3}{2}x^2*\frac{-7}{4}(1+x^2)^\frac{-11}{4}*2x)+((1+x^2)^\frac{-7}{4}*\frac{-6}{2}x)+(\frac{-3}{4}(1+x^2)^\frac{-7}{4}*2x)]
=\frac{1}{2} [\frac{42}{8}x^3(1+x^2)^\frac{-11}{4}-\frac{6}{2}x(1+x^2)^\frac{-7}{4}-\frac{6}{4}x(1+x^2)^\frac{-7}{4}]
=\frac{1}{2} [\frac{21}{4}x^3(1+x^2)^\frac{-11}{4}-3x(1+x^2)^\frac{-7}{4}-\frac{3}{2}x(1+x^2)^\frac{-7}{4}]
=\frac{3}{2} [\frac{7}{4}x^3(1+x^2)^\frac{-11}{4}-x(1+x^2)^\frac{-7}{4}-\frac{1}{2}x(1+x^2)^\frac{-7}{4}
\frac{3}{2} [\frac{7}{2}x^3(1+x^2)^\frac{-11}{4}-3x(1+x^2)^\frac{-7}{4}]
I entered the derivatives I calculated along with the derivatives taken from an online derivative calculator into my graphing calculator to make sure I was coming out with the right answer. It appears I've made a mistake with the 3rd derivative but I can't find the error. Thanks for any help.
Last edited: