I Error in Series Approximations

  • I
  • Thread starter Thread starter Leo Authersh
  • Start date Start date
  • Tags Tags
    Error Series
Leo Authersh
It has been defined that for an alternating series, the difference between the total sum of the series and the partial sum of the series through nth term is always less than or equal to the (n+1)th term. Can anyone explain the intuitive reason behind this?
 
Mathematics news on Phys.org
It's an interesting "definition" - but there could be exceptions.

For an alternating series of real values that converges, what is most commonly seen is that ending on a "plus" term puts you over the correct value and ending on a "minus" term puts you under the correct value. So you steadily close in on the correct value, but you keep crossing from one side to the other as you add each consecutive term.

Given that scenario, you would know that the next term (N+1) is going to overshoot the correct value - and therefor your current error is less than the absolute value of that term.

For example, consider the series ## \sum_{n=0}^{\infty}V^{n} = 1/{V+1} = V + V^2 + V^3 + ...## where ##0>V>-1##.
For V=-0.5, the full sum ("correct value") is 2/3. The partial sums go: 1, 1/2, 3/4, 5/8, 11/16, 23/32, ... . In each case the next partial sum ends up beyond the correct value.

Ahhh. See mfb's post below for the rest of the story.
 
Last edited:
  • Like
Likes Leo Authersh
You need some additional condition for that. ##|a_{n+1}|<|a_n|## is not necessary but sufficient to make that statement true.

Let's assume we have this additional condition, and let's say ##a_n>0## (the proof works exactly the same with flipped signs). Then ##a_{n+1} + a_{n+2}<0## and ##a_{n+3} + a_{n+4}<0## and so on. The sum of all these pairs is negative as well, so the sum of the first n terms overestimates the limit.
At the same time, we know that ##a_{n+2} + a_{n+3}>0## and ##a_{n+4} + a_{n+5}>0## and so on. The sum of the first n+1 terms underestimates the limit. It is ##|a_{n+1}|## smaller than the sum of the first n terms, therefore the error after the nth term is at most the size of the next term.
 
  • Like
Likes Leo Authersh and .Scott
Thank you for the excellent intuitive answers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
2K
Replies
2
Views
3K
Replies
10
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Back
Top