Error Propogation: Calculating Average Acceleration w/ Uncertainty

  • Thread starter Thread starter 012anonymousx
  • Start date Start date
  • Tags Tags
    Error
AI Thread Summary
The discussion centers on the challenges of error propagation when calculating average acceleration from lab measurements with uncertainties. The user is confused about how to incorporate individual uncertainties into the average and is considering two methods: using standard deviation and applying error propagation rules for addition. There is a concern about the influence of noisy measurements versus cleaner ones, suggesting the need for a weighted average approach based on the inverse of variance. The user expresses hesitation about using weighting due to potential bias and is seeking guidance on calculating the final uncertainty of the unweighted average. Ultimately, the thread highlights the complexities of accurately representing uncertainty in experimental data.
012anonymousx
Messages
46
Reaction score
0
This isn't a homework problem. I'm just having ALOT of trouble understanding how to do error propogation.
[EDIT] These are actually lab results. But its not a "homework" question. Its how to do uncertainty. Just trying to be clear.

Consider we take different measurements of an objects acceleration with uncertainties:
-0.2590 ± 0.0065 m/s^2
-0.2760 ± 0.0019 m/s^2
-0.2800 ± 0.0057 m/s^2
-0.2510 ± 0.0230 m/s^2
-0.2640 ± 0.0073 m/s^2
I want to take the average acceleration with the uncertainty of the average.
So the average is fine and easy however;
There are two ways to take the uncertainty:
1. Standard deviation of the acceleration divided by the square root of the number of accelerations.
2. Since to get the mean accelerate we summed accelerations, we use standard error propogation rules for addition and sum the square of the uncertainties and take their square root.

Notice in both of the above, we ignore the other method. In the first, we ignore the fact that each value has its own uncertainty and just look at the standard deviation.

In the second, we ignore the distribution of our data and only look at their individual uncertainties.

So what do I do...? :(.
 
Last edited:
Physics news on Phys.org
012anonymousx said:
So the average is fine and easy however.
Is it? It's not. One thing you don't want to do is to let that noisy measurement of -0.2510 have near as much influence as those other measurements, and that very clean measurement of -0.2760 should have a lot more influence than any of the other measurements. There are lots of ways to do this, but one widely used approach is to weight the measurements by the inverse of the variance. It's a lot easier if the weights sum to one:
$$w_i = \frac{1/\sigma_i^2}{\sum_j 1/\sigma_j^2}$$
With this, the weighted mean is
$$\bar x = \sum w_i x_i$$

What about the variance? An estimate of the variance that follows the same paradigm is given by
$$s^2 = \sum w_i^2 \sigma_i^2$$
Note: This is a biased estimate. It underestimates the variance, with the bias most marked with a small sample size.
 
Ugh... I'm just a first year. My statistics class is next year and I only have to follow standard rules for now, so even if I wanted to, I probably shouldn't look up formulas, especially when there are apparently more than one way to do something (as per yourself).
Also, why should one thing have extra weight and the other less? That seems like we are biasing the results and doesn't make a lot of sense to me. So I will refrain.

Back to my original problem. How do I go about calculating the final uncertainty of the unweighted average?

I really really appreciate your response though.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top