Estimate gravitational energy from supernova

AI Thread Summary
The discussion centers on estimating the gravitational energy released during the collapse of a 15 solar mass star's core to form a neutron star after a Type II supernova. The gravitational potential energy (GPE) is calculated using the formula PE = -GM/r, where M represents the mass of the star minus the mass of the core. Participants discuss the challenge of determining the radius, suggesting an estimated radius of 10-15 km based on typical neutron star sizes. The conversation also touches on the need to consider the uniform density distribution of the star before and after collapse to accurately assess the energy changes. Ultimately, the focus remains on finding a method to estimate the radius for the calculations.
henrco
Messages
46
Reaction score
2

Homework Statement


Suppose that a 15 M(solar masses) star finally runs out of nuclear fuel in its core and undergoes a Type II supernova explosion. You are going to analyse the energy budget, calculating all the quantities in Joules.

a) Estimate the amount of gravitational energy that would be liberated by the collapse of the core (say) 1.4 M(solar masses) to the size of neutron star.

Homework Equations


[/B]
PE = - GM/r

The Attempt at a Solution



To calculate the gravitational PE. I believe the correct formula would be PE = -GM/r
With: M = (15-1.4)M(solar masses)

I'm not given the radius. Since it's a type II supernova, the radius would be around 10-15km.

Is there a way I can accurately calculate the radius?
Or since the question is asking for an estimate do I take an estimated radius based on it been a type II supernova, so a midpoint between 10-15km?

Any help guidance very welcome.
 
Physics news on Phys.org
henrco said:

Homework Statement


Suppose that a 15 M(solar masses) star finally runs out of nuclear fuel in its core and undergoes a Type II supernova explosion. You are going to analyse the energy budget, calculating all the quantities in Joules.

a) Estimate the amount of gravitational energy that would be liberated by the collapse of the core (say) 1.4 M(solar masses) to the size of neutron star.

Homework Equations


[/B]
PE = - GM/r

The Attempt at a Solution



To calculate the gravitational PE. I believe the correct formula would be PE = -GM/r
With: M = (15-1.4)M(solar masses)

I'm not given the radius. Since it's a type II supernova, the radius would be around 10-15km.

Is there a way I can accurately calculate the radius?
Or since the question is asking for an estimate do I take an estimated radius based on it been a type II supernova, so a midpoint between 10-15km?

Any help guidance very welcome.
Mass within it at different initial and final radii will release different quantities of GPE. Consider a thin shell at initial radius r. What radius does it collapse to?
(I don't know whether you are supposed to take initial distribution as uniform; maybe you know.)
 
  • Like
Likes henrco
The thin shell would collapse to (r - width of shell), assuming that the entire shell burns off.
I am to assume initial distribution as uniform.

I understand that the GPE will will be different an initial and final radii. However I don't understand.

1) Is there a way of working out what the radius is? Can it be derived from the information provided. If so, could you please help me with that.
 
henrco said:
The thin shell would collapse to (r - width of shell), assuming that the entire shell burns off.
I am to assume initial distribution as uniform.

I understand that the GPE will will be different an initial and final radii. However I don't understand.

1) Is there a way of working out what the radius is? Can it be derived from the information provided. If so, could you please help me with that.
The final distribution is certainly uniform, and you say you are given that the initial distribution is uniform. So the sphere is compressed from one uniform density to another. (You need to figure out what those densities are. I do not know how to do that.)
If the ratio of the densities is D, what is the ratio of the radius of the 1.4M core before collapse to its radius after collapse?
For a shell radius r within the core before collapse, what is its radius after collapse?
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top