MHB How Does the Order of μ Affect the Height Function h(μ)?

  • Thread starter Thread starter ra_forever8
  • Start date Start date
  • Tags Tags
    Estimate
AI Thread Summary
The discussion focuses on the non-dimensional differential equation for the height function h(μ) given by h(μ) = (1/μ) - (1/μ²) log_e(1+μ) for small values of μ. A Taylor expansion of log_e(1+μ) leads to an estimation of h(μ) as approximately 1/2 + O(μ). The comparison with the time function t_h(μ) = 1 - (μ/2) + O(μ) indicates that for small μ, the maximum height h approaches 1/2, occurring at a time t close to 1. The key takeaway is that the order of μ significantly influences the behavior of the height function, particularly in the limit as μ approaches zero. Thus, h(μ) can be effectively approximated in this regime.
ra_forever8
Messages
106
Reaction score
0
Consider non-dimensional differential equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}
$0<\mu<<1.$
Deduce an estimate to $O(\mu)$ for $h(\mu)$ and compare with $t_h(\mu)=1-\frac{\mu}{2}+...$
=> I really don't how to start this question. please help me.
 
Mathematics news on Phys.org
grandy said:
Consider non-dimensional differential equation for the height at the highest point is given by
\begin{equation} h(\mu)= \frac{1}{\mu}- \frac{1}{\mu^2} log_e(1+\mu) \end{equation}
$0<\mu<<1.$
Deduce an estimate to $O(\mu)$ for $h(\mu)$ and compare with $t_h(\mu)=1-\frac{\mu}{2}+...$
=> I really don't how to start this question. please help me.

Start with a Taylor expansion...
 
I like Serena said:
Start with a Taylor expansion...
$\log_e(1+\mu) = \mu - \dfrac{\mu^2}{2} + \dfrac{\mu^3}{3} - \dfrac{\mu^4}{4}+\cdots$ and plug that in,
to get $h(\mu) =\dfrac12- \dfrac\mu3+\dfrac{\mu^2}{4}+\cdots.$
now, comparing $\log_e(1+\mu)$ with $t_h(\mu)=1-\frac{\mu}{2}+\cdots$
what can I say?
 
Last edited by a moderator:
grandy said:
$\log_e(1+\mu) = \mu - \dfrac{\mu^2}{2} + \dfrac{\mu^3}{3} - \dfrac{\mu^4}{4}+\cdots$ and plug that in,
to get $h(\mu) =\dfrac12- \dfrac\mu3+\dfrac{\mu^2}{4}+\cdots.$

The problem asked for $h(\mu)$ up to $O(\mu)$, so that would be:
$$h(\mu) = \frac 1 2 + O(\mu)$$

now, comparing $\log_e(1+\mu)$ with $t_h(\mu)=1-\frac{\mu}{2}+\cdots$
what can I say?

The time is $t_h(\mu) = 1 + O(\mu)$.
So with small enough $\mu$ the maximum height is approximately $h \approx \dfrac 1 2$ which is reached at a time of approximately $t \approx 1$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
0
Views
1K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
9
Views
1K
Back
Top